Теория вероятности: формулы и примеры решения задач. Формулы для вычисления вероятности событий


Объединением (логической суммой) N событий называют событие, которое наблюдается каждый раз, когда на­ступаетхотя бы одно из событий. В частности, объединением событий A и B называют событие A + B (у некоторых авторов
), которое наблюдается, когданаступает или A, или B или оба этих события одновременно (Рис. 7). Признаком пересечения в тексто­вых формулировках событий служит союз“или” .

Рис. 7. Объединение событий A+B

Необходимо учитывать, что вероятности события P{A} соответствует как левая часть заштрихованной на Рис. 7 фигуры, так и её центральная часть, помеченная как
. И исходы, соответствующие событию B, располагаются как в правой части заштрихованной фигуры, так и в помеченной
центральной части. Таким образом, при сложениииплощадка
реально войдет в эту сумму дважды, а точное выражение для площади заштрихованнойфигуры имеет вид
.

Итак, вероятность объединения двух событий A и B равна

Для большего числа событий общее расчетное выражение становится крайне громоздким из-за необходимости учета многочисленных вариантов взаимного наложения областей. Однако, если объединяемые события являются несовместными (см. с. 33), то взаимное наложение областей оказывается невозможным, а благоприятная зона определяется непосредственно суммой областей, соответствующих отдельным событиям.

Вероятность объединения произвольного числанесов­местных событийопределяется выражением

Следствие 1 : Полная группа событий состоит из событий несовместных, одно из которых в опыте обязательно реализуется. В результате,если события
,образуют полную группу , то для них

Таким образом,

С ледствие 3 Учтем, что противоположным утверждению «произойдет хотя бы одно из событий
» является утверждение «ни одно из событий
не реализуется». Т.е., иначе говоря, «в опыте будут наблюдаться события, и, и …, и», что представляет собой уже пересечение событий, противоположных исходному набору. Отсюда, с учетом (2 .0), для объединения произвольного числа событий получаем

Следствия 2, 3 показывают, что в тех случаях, когда непосредственный расчет вероятности какого-то события является проблематичным, полезно оценить трудоёмкость исследования события ему противоположного. Ведь, зная значение
, получить из (2 .0) нужную величину
никакого труда уже не представляет.

    1. Примеры расчетов вероятностей сложных событий

Пример 1 : Двое студентов (Иванов и Петров) вместе я вились на защиту лабораторной работы, выучив первые 8 кон трольных вопросов к этой работе из 10 имеющихся. Проверяя подготовленность, п реподаватель задает каждому лишь оди н случайно выбираемый вопрос. Определить вероятность следующих событий:

A = “Иванов защитит лабораторную работу”;

B = “Петров защитит лабораторную работу”;

C = “оба защитят лабораторную работу”;

D = “хотя бы один из студентов защитит работу”;

E = “только один из студентов защитит работу”;

F = “никто из них не защитит работу”.

Решение. Отметим, что способность защитить работу как Иванова, т ак и Петрова в отдельности определяется лишь числом освоенных вопросов, поэтом у . (Примечание: в данном примере значения получаемых дробей сознательно не сокращались для упрощения сопоставления результатов расчетов.)

Событие C можно сформулировать иначе как «работу защитит и Иванов, и Петров», т.е. произойдут и событие A , и событие B . Таким образом, событие C является пересечением событий A и B , и в соответствии с (2 .0)

где сомножитель “7/9” появляется из-за того, что наступление события A означает, что Иванову достался «удачный» вопрос, а значит на долю Петрова из оставшихся 9 вопросов приходится теперь лишь 7 «хороших» вопросов.

Событие D подразумевает, что «работу защитит или Иванов, или Петров, или они оба вместе», т.е. произойдёт хотя бы одно из событий A и B . Итак, событие D является объединением событий A и B , и в соответствии с (2 .0)

что соответствует ожиданиям, т.к. даже для каждого из студентов в отдельности шансы на успех довольно велики.

С обытие Е означает, что «либо работу защитит Ивано в, а Петров «п ровалится», или Иванову попадется неудачный во прос, а Петров с защитой справится». Два альтернативных варианта являются взаимоисключающими (несовместными), поэтому

Наконец, утверждение F окажется справедливым лишь если « и Иванов, и Петров с защитой не справятся». Итак,

На этом решение задачи завершено, однако полезно отметить следующие моменты:

1. Каждая из полученных вероятностей удовлетворяет условию (1 .0), н о если для
и
получить конфликт
ующие с (1 .0) в принципе невозможно, то для
попытка и
спользования (2 .0) вместо (2 .0) привела бы к явно некорр ектному значению
. Важно помнить, что подобное значение вероятности принципиально невозможно, и при получении столь парадоксального результата незамедлительно приступать к поиску ошибки.

2. Найденные вероятности удовлетворяют соотношения м

.

Э то вполне ожидаемо, т.к. события C , E и F образуют полн ую группу, а события D и F противоположны друг другу. Учет этих соотношений с одной стороны может быть использо ван для перепроверки расчетов, а в другой ситуации может послужить основой альтернативного способа решения задачи.

П римечание : Не пренебрегайте письменной фиксацией точной формулировки события, иначе по ходу решения задачи Вы можете непроизвольно перейти к иной трактовке смысла этого события, что повлечет ошибки в рассуждениях.

Пример 2 : В крупной партии микросхем, не прошедших выходной контроль качества, 30% изделий являются бракованными. Если из этой партии наугад выбрать какие-либо две микросхемы, то какова вероятность, что среди них:

A = “обе годные”;

B = “ровно 1 годная микросхема”;

C = “обе бракованные”.

Проанализируем следующий вариант рассуждений (осторожно, содержит ошибку):

Так как речь идет о крупной партии изделий, то изъятие из неё нескольких микросхем практически не влияет на соотношение числа годных и бракованных изделий, а значит, выбирая несколько раз подряд какие-то микросхемы из этой партии, можно считать, что в каждом из случаев остаются неизменными вероятности

= P { выбрано бракованное изделие } = 0,3 и

= P { выбрано годное изделие } = 0,7.

Для наступления события A необходимо, чтобы и в первый, и во второй раз было выбрано годное изделии, а потому (учитывая независимость друг от друга успешности выбора первой и второй микросхемы) для пересечения событий имеем

Аналогично, для наступления события С нужно, чтобы оба изделия оказались бракованными , а для получения B нужно один раз выбрать годное, а один – бракованное изделие.

Признак ошибки. Х отя все полученные выше вероятност и выглядят правдоподобными, при их совместном анализе легко з аметить, что .Однако случаи A , B и C образуют полную группу событий, для которой должно выполняться .Это противоречие указывает на наличие какой-то ошибки в рассуждениях.

С уть ошибки. Введем в рассмотрение два вспомогате льных события :

= “первая микросхема – годная, вторая - бракованная”;

= “первая микросхема – бракованная, вторая – годная”.

Очевидно, что , однако именно такой вариант расчета был выше использован для получения вероятности события B , хотя события B и не являются э квивалентными . На самом деле,
, т.к. формулировка
события B требует, чтобы среди микросхем ровно одна , но совсем не обязательно первая была годной (а другая – бракованной). Поэтому, хотя событие не является дублем события, а должно учиты ваться независимо. Учитывая несовместность событий и, вероятность их логической суммы будет равна

После указанного исправления расчетов имеем

что косвенно подтверждает корректность найденных вероятностей.

Примечание : Обращайте особое внимание на отличие в формулировках событий типа “только первый из перечисленных элементов должен…” и “только один из перечисленных элем ентов должен…”. Последнее событие явно шире и включае т в свой состав первое как один из (возможно многочисленны х) вариантов. Эти альтернативные варианты (даже при совпадении их вероятностей) следует учитывать независимо друг от друга.

П римечание : Слово “процент” произошло от “ per cent ”, т.е. “на сотню”. Представление частот и вероятностей в процентах позволяет оперировать более крупными значениями, что иногда упрощает восприятие значений “на слух”. Однако использовать в расчетах для правильной нормировки умножение или деление на “100 %” громоздко и неэффективно. В связи с этим, не з абывайте при использовании значений, упомя нутых в процентах, подставлять их в расчетные выражения у же в виде долей от единицы (например, 35% в расчете записываетс я как “0,35”), чтобы минимизировать риск ошибочной нормировки результатов.

Пример 3 : Набор резисторов содержит один резистор н оминалом 4 кОм, три резистора по 8 кОм и шесть резист оров с сопротивлением 15 кОм. Выбранные наугад три резистора соединяются друг с другом параллельно. Определить вероятность получения итогового сопротивления, не превышающего 4 кОм.

Реш ение. Сопротивление параллельного соединения рез исторов может быть рассчитано по формуле

.

Это позволяет ввести в рассмотрение события, такие как

A = “выбраны три резистора по 15 кОм” = “
;

B = “в зяты два резистора по 15 кОм и один с сопротивление м 8 кОм” =“

Полная группа событий, соответствующих условию задачи, включает ещё целый ряд вариантов, причем именно таких, к оторые соответствуют выдвинутому требованию о получении сопротивления не более чем 4 кОм. Однако, хотя “прямой” путь решения, предполагающий расчет (и последующее сумми рование) вероятностей, характеризующих все эти события, и является правильным, действовать таким образом нецелесообразно.

Отметим, что для получения итогового сопротивления менее 4 кОм д остаточно, чтобы в используемый набор вошел хотя бы один резистор с сопротивлени ем менее 15 кОм. Таким образом, лишь в случае A требование задачи не выполняется, т.е. событие A является противоположным исследуемому. Вместе с тем,

.

Таким образом, .

П ри мечание : Рассчитывая вероятность некоторого события A , не забывайте проанализировать трудоемкость определени я ве­роятности события ему противоположного. Если расс читать
легко, то именно с этого и надо начинать решен ие задачи , завершая его применением соотношения (2 .0).

П ример 4 : В коробке имеются n белых, m черных и k красных шаров. Шары по одному наугад извлекаются из коробки и возвращаются обратно после каждого извлечения. Определить вероятность события A = “белый шар будет извлечен раньше, чем черный .

Реш ение. Рассмотрим следующую совокупность событий

= “белый шар извлекли при первой же попытке”;

= “сначала вынули красный шар, а затем - белый”;

= “дважды вынули красный шар, а на третий раз - белый ”…

Так к ак шарики возвращаются, то последовательность соб ытий может быть формально бесконечно протяженной.

Эти события являются несовместными и составляют в совокупности тот набор ситуаций, при которых происходит событие A . Таким образом,

Несложно заметить, что входящие в сумму слагаемые образуют геометрическую прогрессию с начальным элементом
и знаменателем
. Но сумм
а элементов бесконечной геометрической прогрессии равна

.

Таким образом, . Л юбопытно, что эта вероятность (как следует из полученно го выражения) не зависит от числа красных шаров в коробке.

ТЕМА 1 . Классическая формула вычисления вероятности.

Основные определения и формулы:

Эксперимент, исход которого невозможно предсказать, называют случайным экспериментом (СЭ).

Событие, которое в данном СЭ может произойти, а может и не произойти, называют случайным событием .

Элементарными исходами называют события, удовлетворяющие требованиям:

1.при всякой реализации СЭ происходит один и только один элементарный исход;

2.всякое событие есть некоторая комбинация, некоторый набор элементарных исходов.

Множество всех возможных элементарных исходов полностью описывает СЭ. Такое множество принято называть пространством элементарных исходов (ПЭИ). Выбор ПЭИ для описания данного СЭ неоднозначен и зависит от решаемой задачи.

Р(А) = n (A ) / n ,

где n – общее число равновозможных исходов,

n (A ) – число исходов, составляющих событие А, как говорят еще, благоприятствующих событию А.

Слова “наудачу”, “наугад”, “случайным образом” как раз и гарантируют равновозможность элементарных исходов.

Решение типовых примеров

Пример 1. Из урны, содержащей 5 красных, 3 черных и 2 белых шара, наудачу извлекают 3 шара. Найти вероятности событий:

А – “все извлеченные шары красные”;

В – “ все извлеченные шары – одного цвета”;

С – “среди извлеченных ровно 2 черных”.

Решение:

Элементарным исходом данного СЭ является тройка (неупорядоченная!) шаров. Поэтому, общее число исходов есть число сочетаний: n == 120 (10 = 5 + 3 + 2).

Событие А состоит только из тех троек, которые извлекались из пяти красных шаров, т.е. n (A )== 10.

Событию В кроме 10 красных троек благоприятствуют еще и черные тройки, число которых равно= 1. Поэтому: n (B )=10+1=11.

Событию С благоприятствуют те тройки шаров, которые содержат 2 черных и один не черный. Каждый способ выбора двух черных шаров может комбинироваться с выбором одного не черного (из семи). Поэтому: n (C ) = = 3 * 7 = 21.

Итак: Р(А) = 10/120; Р(В) = 11/120; Р(С) = 21/120.

Пример 2. В условиях предыдущей задачи будем считать, что шары каждого цвета имеют свою нумерацию, начиная с 1. Найти вероятности событий:

D – “максимальный извлеченный номер равен 4”;

Е – “ максимальный извлеченный номер равен 3”.

Решение:

Для вычисления n (D ) можно считать, что в урне есть один шар с номером 4, один шар с большим номером и 8 шаров (3к+3ч+2б) с меньшими номерами. Событию D благоприятствуют те тройки шаров, которые обязательно содержат шар с номером 4 и 2 шара с меньшими номерами. Поэтому: n (D ) =

P (D ) = 28/120.

Для вычисления n (Е) считаем: в урне два шара с номером 3, два с большими номерами и шесть шаров с меньшими номерами (2к+2ч+2б). Событие Е состоит из троек двух типов:

1.один шар с номером 3 и два с меньшими номерами;

2.два шара с номером 3 и один с меньшим номером.

Поэтому: n (E )=

Р(Е) = 36/120.

Пример 3. Каждая из М различных частиц бросается наудачу в одну из N ячеек. Найти вероятности событий:

А – все частицы попали во вторую ячейку;

В – все частицы попали в одну ячейку;

С – каждая ячейка содержит не более одной частицы (M £ N );

D – все ячейки заняты (M =N +1);

Е – вторая ячейка содержит ровно к частиц.

Решение:

Для каждой частицы имеется N способов попасть в ту или иную ячейку. По основному принципу комбинаторики для М частиц имеем N *N *N *…*N (М-раз). Итак, общее число исходов в данном СЭ n = N M .

Для каждой частицы имеем одну возможность попасть во вторую ячейку, поэтому n (A ) = 1*1*…*1= 1 М = 1, и Р(А) = 1/ N M .

Попасть в одну ячейку (всем частицам) означает попасть всем в первую, или всем во вторую, или и т.д. всем в N -ю. Но каждый из этих N вариантов может осуществиться одним способом. Поэтому n (B )=1+1+…+1(N -раз)=N и Р(В)=N /N M .

Событие С означает, что у каждой частицы число способов размещения на единицу меньше, чем у предыдущей частицы, а первая может попасть в любую из N ячеек. Поэтому:

n (C ) = N *(N -1)*…*(N +M -1) и Р(С) =

В частном случае при M =N : Р(С)=

Событие D означает, что одна из ячеек содержит две частицы, а каждая из (N -1) оставшихся ячеек содержит по одной частице. Чтобы найти n (D ) рассуждаем так: выберем ячейку в которой будет две частицы, это можно сделать =N способами; затем выберем две частицы для этой ячейки, для этого существует способов. После этого оставшиеся (N -1) частиц распределим по одной в оставшиеся (N -1) ячеек, для этого имеется (N -1)! способов.

Итак, n (D ) =

.

Число n (E ) можно подсчитать так: к частиц для второй ячейки можно способами, оставшиеся (М – К) частиц распределяются произвольным образом по (N -1) ячейке (N -1) М-К способами. Поэтому:

  • Раздел 1. Случайные события (50 часов)
  • Тематический план дисциплины для студентов очно-заочной формы обучения
  • Тематический план дисциплины для студентов заочной формы обучения
  • 2.3. Структурно-логическая схема дисциплины
  • Математика ч.2. Теория вероятностей и элементы математической статистики Теория
  • Раздел 1 Случайные события
  • Раздел 3 Элементы математической статистики
  • Раздел 2 Случайные величины
  • 2.5. Практический блок
  • 2.6. Балльно-рейтинговая система
  • Информационные ресурсы дисциплины
  • Библиографический список Основной:
  • 3.2. Опорный конспект по курсу “ Математика ч.2. Теория вероятностей и элементы математической статистики” введение
  • Раздел 1. Случайные события
  • 1.1. Понятие случайного события
  • 1.1.1. Сведения из теории множеств
  • 1.1.2. Пространство элементарных событий
  • 1.1.3. Классификация событий
  • 1.1.4. Сумма и произведение событий
  • 1.2. Вероятности случайных событий.
  • 1.2.1. Относительная частота события, аксиомы теории вероятностей. Классическое определение вероятности
  • 1.2.2. Геометрическое определение вероятности
  • Вычисление вероятности события через элементы комбинаторного анализа
  • 1.2.4. Свойства вероятностей событий
  • 1.2.5. Независимые события
  • 1.2.6. Расчет вероятности безотказной работы прибора
  • Формулы для вычисления вероятности событий
  • 1.3.1. Последовательность независимых испытаний (схема Бернулли)
  • 1.3.2. Условная вероятность события
  • 1.3.4. Формула полной вероятности и формула Байеса
  • Раздел 2. Случайные величины
  • 2.1. Описание случайных величин
  • 2.1.1. Определение и способы задания случайной величины Одним из основных понятий теории вероятности является понятие случайной величины. Рассмотрим некоторые примеры случайных величин:
  • Чтобы задать случайную величину, надо указать ее закон распределения. Случайные величины принято обозначать греческими буквами ,,, а их возможные значения – латинскими буквами с индексамиxi,yi,zi.
  • 2.1.2. Дискретные случайные величины
  • Рассмотрим события Ai , содержащие все элементарные события , приводящие к значению XI:
  • Пусть pi обозначает вероятность события Ai:
  • 2.1.3. Непрерывные случайные величины
  • 2.1.4. Функция распределения и ее свойства
  • 2.1.5. Плотность распределения вероятности и ее свойства
  • 2.2. Числовые характеристики случайных величин
  • 2.2.1. Математическое ожидание случайной величины
  • 2.2.2. Дисперсия случайной величины
  • 2.2.3. Нормальное распределение случайной величины
  • 2.2.4. Биномиальное распределение
  • 2.2.5. Распределение Пуассона
  • Раздел 3. Элементы математической статистики
  • 3.1. Основные определения
  • Гистограмма
  • 3.3. Точечные оценки параметров распределения
  • Основные понятия
  • Точечные оценки математического ожидания и дисперсии
  • 3.4. Интервальные оценки
  • Понятие интервальной оценки
  • Построение интервальных оценок
  • Основные статистические распределения
  • Интервальные оценки математического ожидания нормального распределения
  • Интервальная оценка дисперсии нормального распределения
  • Заключение
  • Глоссарий
  • 4. Методические указания к выполнению лабораторных работ
  • Библиографический список
  • Лабораторная работа 1 описание случайных величин. Числовые характеристики
  • Порядок выполнения лабораторной работы
  • Лабораторная работа 2 Основные определения. Систематизация выборки. Точечные оценки параметров распределения. Интервальные оценки.
  • Понятие статистической гипотезы о виде распределения
  • Порядок выполнения лабораторной работы
  • Ячейка Значение Ячейка Значение
  • 5. Методические указания к выполнению контрольной работы Задание на контрольную работу
  • Методические указания к выполнению контрольной работы События и их вероятности
  • Случайные величины
  • Среднее квадратическое отклонение
  • Элементы математической статистики
  • 6. Блок контроля освоения дисциплины
  • Вопросы для экзамена по курсу « Математика ч.2. Теория вероятностей и элементы математической статистики»
  • Продолжение таблицы в
  • Окончание таблицы в
  • Равномерно распределенные случайные числа
  • Содержание
  • Раздел 1. Случайные события………………………………………. 18
  • Раздел 2 . Случайные величины..………………………… ….. 41
  • Раздел 3. Элементы математической статистики............... . 64
  • 4. Методические указания к выполнению лабораторных
  • 5. Методические указания к выполнению контрольной
      1. Формулы для вычисления вероятности событий

    1.3.1. Последовательность независимых испытаний (схема Бернулли)

    Предположим, что некоторый эксперимент можно проводить неоднократно при одних и тех же условиях. Пусть этот опыт производится n раз, т. е. проводится последовательность из n испытаний.

    Определение. Последовательность n испытаний называют взаимно независимой , если любое событие, связанное с данным испытанием, не зависит от любых событий, относящихся к остальным испытаниям.

    Допустим, что некоторое событие A может произойти с вероятностью p в результате одного испытания или не произойти с вероятностью q = 1- p .

    Определение . Последовательность из n испытаний образует схему Бернулли, если выполняются следующие условия:

      последовательность n испытаний взаимно независима,

    2) вероятность события A не изменяется от испытания к испытанию и не зависит от результата в других испытаниях.

    Событие A называют “ успехом” испытания, а противоположное событие - “неудачей”. Рассмотрим событие

    ={ в n испытаниях произошло ровно m “успехов”}.

    Для вычисления вероятности этого события справедлива формула Бернулли

    p () =
    , m = 1, 2, …, n , (1.6)

    где - число сочетаний из n элементов по m :

    =
    =
    .

    Пример 1.16. Три раза подбрасывают кубик. Найти:

    а) вероятность того, что 6 очков выпадет два раза;

    б) вероятность того, что число шестерок не появится более двух раз.

    Решение . “Успехом” испытания будем считать выпадение на кубике грани с изображением 6 очков.

    а) Общее число испытаний – n =3, число “успехов” – m = 2. Вероятность “успеха” - p =, а вероятность “неудачи” - q = 1 - =. Тогда по формуле Бернулли вероятность того, что результате трехразового бросания кубика два раза выпадет сторона с шестью очками, будет равна

    .

    б) Обозначим через А событие, которое заключается в том, что грань с числом очков 6 появится не более двух раз. Тогда событие можно представить в виде суммы трех несовместных событий А=
    ,

    где В 3 0 – событие, когда интересующая грань ни разу не появится,

    В 3 1 - событие, когда интересующая грань появится один раз,

    В 3 2 - событие, когда интересующая грань появится два раза.

    По формуле Бернулли (1.6) найдем

    p (А ) = р (
    ) = p (
    )=
    +
    +
    =

    =
    .

    1.3.2. Условная вероятность события

    Условная вероятность отражает влияние одного события на вероятность другого. Изменение условий, в которых проводится эксперимент, также влияет

    на вероятность появления интересующего события.

    Определение. Пусть A и B – некоторые события, и вероятность p (B )> 0.

    Условной вероятностью события A при условии, что “событие B уже произошло” называется отношение вероятности произведения данных событий к вероятности события, которое произошло раньше, чем событие, вероятность которого требуется найти. Условная вероятность обозначается как p (A B ). Тогда по определению

    p (A B ) =
    . (1.7)

    Пример 1.17. Подбрасывают два кубика. Пространство элементарных событий состоит из упорядоченных пар чисел

    (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

    (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

    (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

    (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

    (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

    (6,1) (6,2) (6,3) (6,4) (6,5) (6,6).

    В примере 1.16 было установлено, что событие A ={число очков на первом кубике > 4} и событие C ={сумма очков равна 8} зависимы. Составим отношение

    .

    Это отношение можно интерпретировать следующим образом. Допустим, что о результате первого бросания известно, что число очков на первом кубике > 4. Отсюда следует, что бросание второго кубика может привести к одному из 12 исходов, составляющих событие A :

    (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

    (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) .

    При этом событию C могут соответствовать только два из них (5,3) (6,2). В этом случае вероятность события C будет равна
    . Таким образом, информация о наступлении событияA оказала влияние на вероятность события C .

          Вероятность произведения событий

    Теорема умножения

    Вероятность произведения событий A 1 A 2 A n определяется формулой

    p (A 1 A 2 A n ) = p (A 1) p (A 2 A 1))p (A n A 1 A 2 A n- 1). (1.8)

    Для произведения двух событий отсюда следует, что

    p (AB ) = p (A B) p {B ) = p (B A ) p {A ). (1.9)

    Пример 1.18. В партии из 25 изделий 5 изделий бракованных. Последовательно наугад выбирают 3 изделия. Определить вероятность того, что все выбранные изделия бракованные.

    Решение. Обозначим события:

    A 1 = {первое изделие бракованное},

    A 2 = {второе изделие бракованное},

    A 3 = {третье изделие бракованное},

    A = {все изделия бракованные}.

    Событие А есть произведение трех событий A = A 1 A 2 A 3 .

    Из теоремы умножения (1.6) получим

    p (A ) = р( A 1 A 2 A 3 ) = p (A 1) p (A 2 A 1))p (A 3 A 1 A 2).

    Классическое определение вероятности позволяет найти p (A 1) – это отношение числа бракованных изделий к общему количеству изделий:

    p (A 1)= ;

    p (A 2)это отношение числа бракованных изделий, оставшихся после изъятия одного, к общему числу оставшихся изделий:

    p (A 2 A 1))= ;

    p (A 3) – это отношение числа бракованных изделий, оставшихся после изъятия двух бракованных, к общему числу оставшихся изделий:

    p (A 3 A 1 A 2)=.

    Тогда вероятность события A будет равна

    p (A ) ==
    .

    "Случайности не случайны"... Звучит так, словно сказал философ, но на деле изучать случайности удел великой науки математики. В математике случайностями занимается теория вероятности. Формулы и примеры заданий, а также основные определения этой науки будут представлены в статье.

    Что такое теория вероятности?

    Теория вероятности - это одна из математических дисциплин, которая изучает случайные события.

    Чтобы было немного понятнее, приведем небольшой пример: если подкинуть вверх монету, она может упасть «орлом» или «решкой». Пока монета находится в воздухе, обе эти вероятности возможны. То есть вероятность возможных последствий соотносится 1:1. Если из колоды с 36-ю картами вытащить одну, тогда вероятность будет обозначаться как 1:36. Казалось бы, что здесь нечего исследовать и предугадывать, тем более при помощи математических формул. Тем не менее, если повторять определенное действие много раз, то можно выявить некую закономерность и на ее основе спрогнозировать исход событий в других условиях.

    Если обобщить все вышесказанное, теория вероятности в классическом понимании изучает возможность возникновения одного из возможных событий в числовом значении.

    Со страниц истории

    Теория вероятности, формулы и примеры первых заданий появились еще в далеком Средневековье, когда впервые возникли попытки спрогнозировать исход карточных игр.

    Изначально теория вероятности не имела ничего общего с математикой. Она обосновывалась эмпирическими фактами или свойствами события, которое можно было воспроизвести на практике. Первые работы в этой сфере как в математической дисциплине появились в XVII веке. Родоначальниками стали Блез Паскаль и Пьер Ферма. Длительное время они изучали азартные игры и увидели определенные закономерности, о которых и решили рассказать обществу.

    Такую же методику изобрел Христиан Гюйгенс, хотя он не был знаком с результатами исследований Паскаля и Ферма. Понятие «теория вероятности», формулы и примеры, что считаются первыми в истории дисциплины, были введены именно им.

    Немаловажное значение имеют и работы Якоба Бернулли, теоремы Лапласа и Пуассона. Они сделали теорию вероятности больше похожей на математическую дисциплину. Свой теперешний вид теория вероятностей, формулы и примеры основных заданий получили благодаря аксиомам Колмогорова. В результате всех изменений теория вероятности стала одним из математических разделов.

    Базовые понятия теории вероятностей. События

    Главным понятием этой дисциплины является "событие". События бывают трех видов:

    • Достоверные. Те, которые произойдут в любом случае (монета упадет).
    • Невозможные. События, что не произойдут ни при каком раскладе (монета останется висеть в воздухе).
    • Случайные. Те, что произойдут или не произойдут. На них могут повлиять разные факторы, которые предугадать очень трудно. Если говорить о монете, то случайные факторы, что могут повлиять на результат: физические характеристики монеты, ее форма, исходное положение, сила броска и т. д.

    Все события в примерах обозначаются заглавными латинскими буквами, за исключением Р, которой отведена другая роль. Например:

    • А = «студенты пришли на лекцию».
    • Ā = «студенты не пришли на лекцию».

    В практических заданиях события принято записывать словами.

    Одна из важнейших характеристик событий - их равновозможность. То есть, если подбросить монету, все варианты исходного падения возможны, пока она не упала. Но также события бывают и не равновозможными. Это происходит, когда кто-то специально воздействует на исход. Например, «меченые» игральные карты или игральные кости, в которых смещен центр тяжести.

    Еще события бывают совместимыми и несовместимыми. Совместимые события не исключают появления друг друга. Например:

    • А = «студентка пришла на лекцию».
    • В = «студент пришел на лекцию».

    Эти события независимы друг от друга, и появление одного из них не влияет на появление другого. Несовместимые события определяются тем, что появление одного исключает появление другого. Если говорить о той же монете, то выпадение «решки» делает невозможным появление «орла» в этом же эксперименте.

    Действия над событиями

    События можно умножать и складывать, соответственно, в дисциплине вводятся логические связки «И» и «ИЛИ».

    Сумма определяется тем, что может появиться или событие А, или В, или два одновременно. В случае когда они несовместимы, последний вариант невозможен, выпадет или А, или В.

    Умножение событий заключается в появлении А и В одновременно.

    Теперь можно привести несколько примеров, чтобы лучше запомнились основы, теория вероятности и формулы. Примеры решения задач далее.

    Задание 1 : Фирма принимает участие в конкурсе на получение контрактов на три разновидности работы. Возможные события, которые могут произойти:

    • А = «фирма получит первый контракт».
    • А 1 = «фирма не получит первый контракт».
    • В = «фирма получит второй контракт».
    • В 1 = «фирма не получит второй контракт»
    • С = «фирма получит третий контракт».
    • С 1 = «фирма не получит третий контракт».

    С помощью действий над событиями попробуем выразить следующие ситуации:

    • К = «фирма получит все контракты».

    В математическом виде уравнение будет иметь следующий вид: К = АВС.

    • М = «фирма не получит ни одного контракта».

    М = А 1 В 1 С 1 .

    Усложняем задание: H = «фирма получит один контракт». Поскольку не известно, какой именно контракт получит фирма (первый, второй или третий), необходимо записать весь ряд возможных событий:

    Н = А 1 ВС 1 υ АВ 1 С 1 υ А 1 В 1 С.

    А 1 ВС 1 - это ряд событий, где фирма не получает первый и третий контракт, но получает второй. Соответственным методом записаны и другие возможные события. Символ υ в дисциплине обозначает связку «ИЛИ». Если перевести приведенный пример на человеческий язык, то фирма получит или третий контракт, или второй, или первый. Подобным образом можно записывать и другие условия в дисциплине «Теория вероятности». Формулы и примеры решения задач, представленные выше, помогут сделать это самостоятельно.

    Собственно, вероятность

    Пожалуй, в этой математической дисциплине вероятность события - это центральное понятие. Существует 3 определения вероятности:

    • классическое;
    • статистическое;
    • геометрическое.

    Каждое имеет свое место в изучении вероятностей. Теория вероятности, формулы и примеры (9 класс) в основном используют классическое определение, которое звучит так:

    • Вероятность ситуации А равняется отношению числа исходов, что благоприятствуют ее появлению, к числу всех возможных исходов.

    Формула выглядит так: Р(А)=m/n.

    А - собственно, событие. Если появляется случай, противоположный А, его можно записывать как Ā или А 1 .

    m - количество возможных благоприятных случаев.

    n - все события, которые могут произойти.

    Например, А = «вытащить карту червовой масти». В стандартной колоде 36 карт, 9 из них червовой масти. Соответственно, формула решения задания будет иметь вид:

    Р(А)=9/36=0,25.

    В итоге вероятность того, что из колоды вытянут карту червовой масти, составит 0,25.

    К высшей математике

    Теперь стало немного известно, что такое теория вероятности, формулы и примеры решения заданий, которые попадаются в школьной программе. Однако теория вероятностей встречается и в высшей математике, которая преподается в вузах. Чаще всего там оперируют геометрическими и статистическими определениями теории и сложными формулами.

    Очень интересна теория вероятности. Формулы и примеры (высшая математика) лучше начинать изучать с малого - со статистического (или частотного) определения вероятности.

    Статистический подход не противоречит классическому, а немного расширяет его. Если в первом случае нужно было определить, с какой долей вероятности произойдет событие, то в этом методе необходимо указать, как часто оно будет происходить. Здесь вводится новое понятие «относительная частота», которую можно обозначить W n (A). Формула ничем не отличается от классической:

    Если классическая формула вычисляется для прогнозирования, то статистическая - согласно результатам эксперимента. Возьмем, к примеру, небольшое задание.

    Отдел технологического контроля проверяет изделия на качество. Среди 100 изделий нашли 3 некачественных. Как найти вероятность частоты качественного товара?

    А = «появление качественного товара».

    W n (A)=97/100=0,97

    Таким образом, частота качественного товара составляет 0,97. Откуда взяли 97? Из 100 товаров, которые проверили, 3 оказались некачественными. От 100 отнимаем 3, получаем 97, это количество качественного товара.

    Немного о комбинаторике

    Еще один метод теории вероятности называют комбинаторикой. Его основной принцип состоит в том, что если определенный выбор А можно осуществить m разными способами, а выбор В - n разными способами, то выбор А и В можно осуществить путем умножения.

    Например, из города А в город В ведет 5 дорог. Из города В в город С ведет 4 пути. Сколькими способами можно доехать из города А в город С?

    Все просто: 5х4=20, то есть двадцатью разными способами можно добраться из точки А в точку С.

    Усложним задание. Сколько существует способов раскладывания карт в пасьянсе? В колоде 36 карт - это исходная точка. Чтобы узнать количество способов, нужно от исходной точки «отнимать» по одной карте и умножать.

    То есть 36х35х34х33х32…х2х1= результат не вмещается на экран калькулятора, поэтому его можно просто обозначить 36!. Знак «!» возле числа указывает на то, что весь ряд чисел перемножается между собой.

    В комбинаторике присутствуют такие понятия, как перестановка, размещение и сочетание. Каждое из них имеет свою формулу.

    Упорядоченный набор элементов множества называют размещением. Размещения могут быть с повторениями, то есть один элемент можно использовать несколько раз. И без повторений, когда элементы не повторяются. n - это все элементы, m - элементы, которые участвуют в размещении. Формула для размещения без повторений будет иметь вид:

    A n m =n!/(n-m)!

    Соединения из n элементов, которые отличаются только порядком размещения, называют перестановкой. В математике это имеет вид: Р n = n!

    Сочетаниями из n элементов по m называют такие соединения, в которых важно, какие это были элементы и каково их общее количество. Формула будет иметь вид:

    A n m =n!/m!(n-m)!

    Формула Бернулли

    В теории вероятности, так же как и в каждой дисциплине, имеются труды выдающихся в своей области исследователей, которые вывели ее на новый уровень. Один из таких трудов - формула Бернулли, что позволяет определять вероятность появления определенного события при независимых условиях. Это говорит о том, что появление А в эксперименте не зависит от появления или не появления того же события в ранее проведенных или последующих испытаниях.

    Уравнение Бернулли:

    P n (m) = C n m ×p m ×q n-m .

    Вероятность (р) появления события (А) неизменна для каждого испытания. Вероятность того, что ситуация произойдет ровно m раз в n количестве экспериментов, будет вычисляться формулой, что представлена выше. Соответственно, возникает вопрос о том, как узнать число q.

    Если событие А наступает р количество раз, соответственно, оно может и не наступить. Единица - это число, которым принято обозначать все исходы ситуации в дисциплине. Поэтому q - число, которое обозначает возможность ненаступления события.

    Теперь вам известна формула Бернулли (теория вероятности). Примеры решения задач (первый уровень) рассмотрим далее.

    Задание 2: Посетитель магазина сделает покупку с вероятностью 0,2. В магазин зашли независимым образом 6 посетителей. Какова вероятность того, что посетитель сделает покупку?

    Решение: Поскольку неизвестно, сколько посетителей должны сделать покупку, один или все шесть, необходимо просчитать все возможные вероятности, пользуясь формулой Бернулли.

    А = «посетитель совершит покупку».

    В этом случае: р = 0,2 (как указано в задании). Соответственно, q=1-0,2 = 0,8.

    n = 6 (поскольку в магазине 6 посетителей). Число m будет меняться от 0 (ни один покупатель не совершит покупку) до 6 (все посетители магазина что-то приобретут). В итоге получим решение:

    P 6 (0) = C 0 6 ×p 0 ×q 6 =q 6 = (0,8) 6 = 0,2621.

    Ни один из покупателей не совершит покупку с вероятностью 0,2621.

    Как еще используется формула Бернулли (теория вероятности)? Примеры решения задач (второй уровень) далее.

    После вышеприведенного примера возникают вопросы о том, куда делись С и р. Относительно р число в степени 0 будет равно единице. Что касается С, то его можно найти формулой:

    C n m = n! / m!(n-m)!

    Поскольку в первом примере m = 0, соответственно, С=1, что в принципе не влияет на результат. Используя новую формулу, попробуем узнать, какова вероятность покупки товаров двумя посетителями.

    P 6 (2) = C 6 2 ×p 2 ×q 4 = (6×5×4×3×2×1) / (2×1×4×3×2×1) × (0,2) 2 × (0,8) 4 = 15 × 0,04 × 0,4096 = 0,246.

    Не так уж и сложна теория вероятности. Формула Бернулли, примеры которой представлены выше, прямое тому доказательство.

    Формула Пуассона

    Уравнение Пуассона используется для вычисления маловероятных случайных ситуаций.

    Основная формула:

    P n (m)=λ m /m! × e (-λ) .

    При этом λ = n х p. Вот такая несложная формула Пуассона (теория вероятности). Примеры решения задач рассмотрим далее.

    Задание 3 : На заводе изготовили детали в количестве 100000 штук. Появление бракованной детали = 0,0001. Какова вероятность, что в партии будет 5 бракованных деталей?

    Как видим, брак - это маловероятное событие, в связи с чем для вычисления используется формула Пуассона (теория вероятности). Примеры решения задач подобного рода ничем не отличаются от других заданий дисциплины, в приведенную формулу подставляем необходимые данные:

    А = «случайно выбранная деталь будет бракованной».

    р = 0,0001 (согласно условию задания).

    n = 100000 (количество деталей).

    m = 5 (бракованные детали). Подставляем данные в формулу и получаем:

    Р 100000 (5) = 10 5 /5! Х е -10 = 0,0375.

    Так же как и формула Бернулли (теория вероятности), примеры решений с помощью которой написаны выше, уравнение Пуассона имеет неизвестное е. По сути его можно найти формулой:

    е -λ = lim n ->∞ (1-λ/n) n .

    Однако есть специальные таблицы, в которых находятся практически все значения е.

    Теорема Муавра-Лапласа

    Если в схеме Бернулли количество испытаний достаточно велико, а вероятность появления события А во всех схемах одинакова, то вероятность появления события А определенное количество раз в серии испытаний можно найти формулой Лапласа:

    Р n (m)= 1/√npq x ϕ(X m).

    X m = m-np/√npq.

    Чтобы лучше запомнилась формула Лапласа (теория вероятности), примеры задач в помощь ниже.

    Сначала найдем X m , подставляем данные (они все указаны выше) в формулу и получим 0,025. При помощи таблиц находим число ϕ(0,025), значение которого 0,3988. Теперь можно подставлять все данные в формулу:

    Р 800 (267) = 1/√(800 х 1/3 х 2/3) х 0,3988 = 3/40 х 0,3988 = 0,03.

    Таким образом, вероятность того, что рекламная листовка сработает ровно 267 раз, составляет 0,03.

    Формула Байеса

    Формула Байеса (теория вероятности), примеры решения заданий с помощью которой будут приведены ниже, представляет собой уравнение, которое описывает вероятность события, опираясь на обстоятельства, которые могли быть связаны с ним. Основная формула имеет следующий вид:

    Р (А|B) = Р (В|А) х Р (А) / Р (В).

    А и В являются определенными событиями.

    Р(А|B) - условная вероятность, то есть может произойти событие А при условии, что событие В истинно.

    Р (В|А) - условная вероятность события В.

    Итак, заключительная часть небольшого курса «Теория вероятности» - формула Байеса, примеры решений задач с которой ниже.

    Задание 5 : На склад привезли телефоны от трех компаний. При этом часть телефонов, которые изготавливаются на первом заводе, составляет 25%, на втором - 60%, на третьем - 15%. Известно также, что средний процент бракованных изделий у первой фабрики составляет 2%, у второй - 4%, и у третьей - 1%. Необходимо найти вероятность того, что случайно выбранный телефон окажется бракованным.

    А = «случайно взятый телефон».

    В 1 - телефон, который изготовила первая фабрика. Соответственно, появятся вводные В 2 и В 3 (для второй и третьей фабрик).

    В итоге получим:

    Р (В 1) = 25%/100% = 0,25; Р(В 2) = 0,6; Р (В 3) = 0,15 - таким образом мы нашли вероятность каждого варианта.

    Теперь нужно найти условные вероятности искомого события, то есть вероятность бракованной продукции в фирмах:

    Р (А/В 1) = 2%/100% = 0,02;

    Р(А/В 2) = 0,04;

    Р (А/В 3) = 0,01.

    Теперь подставим данные в формулу Байеса и получим:

    Р (А) = 0,25 х 0,2 + 0,6 х 0,4 + 0,15 х 0,01= 0,0305.

    В статье представлена теория вероятности, формулы и примеры решения задач, но это только вершина айсберга обширной дисциплины. И после всего написанного логично будет задаться вопросом о том, нужна ли теория вероятности в жизни. Простому человеку сложно ответить, лучше спросить об этом у того, кто с ее помощью не единожды срывал джек-пот.

    Можно ли выиграть в лотерею? Какие шансы угадать нужное количество чисел и получить джекпот или приз младшей категории? Вероятность выигрыша легко просчитывается, любой желающий может сделать это самостоятельно.

    Как вообще считается вероятность выигрыша в лотерею?

    Числовые лотереи проводятся по определенным формулам и шансы каждого события (выигрыша той или иной категории) рассчитываются математически. Причем эта вероятность вычисляется для любого нужного значения, будь то «5 из 36», «6 из 45», или «7 из 49» и она не меняется, так как зависит только от общего количества чисел (шаров, номеров) и того, сколько из них надо угадать.

    Например, для лотереи «5 из 36» вероятности всегда следующие

    • угадать два числа — 1: 8
    • угадать три числа — 1: 81
    • угадать четыре числа — 1: 2 432
    • угадать пять чисел — 1: 376 992

    Другими словами — если отметить в билете одну комбинацию (5 номеров), то шанс угадать «двойку» всего 1 из 8. А вот «пять» номеров поймать гораздо сложнее, это уже 1 шанс из 376 992. Именно такое (376 тысяч) количество всевозможных комбинаций существует в лотерее «5 из 36» и гарантированно в ней выиграть можно, если только заполнить их все. Правда, сумма выигрыша в этом случае не оправдает вложений: если билет стоит 80 рублей, то отметить все комбинации будет стоить 30 159 360 рублей. Джекпот обычно намного меньше.

    В общем, все вероятности давно известны, всего и остается, что их найти или рассчитать самостоятельно, при помощи соответствующих формул.

    Для тех, кому искать лень, приведем вероятности выигрыша для основных числовых лотерей Столото — они представлены в этой таблице

    Сколько чисел надо угадать шансы в 5 из 36 шансы в 6 из 45 шансы в 7 из 49
    2 1:8 1:7
    3 1:81 1:45 1:22
    4 1:2432 1:733 1:214
    5 1:376 992 1:34 808 1:4751
    6 1:8 145 060 1:292 179
    7 1:85 900 584

    Необходимые пояснения

    Лото-виджет позволяет рассчитывать вероятности выигрыша для лотерей с одним лототроном (без бонусных шаров) или с двумя лототронами. Также можно просчитать вероятности развернутых ставок

    Расчет вероятности для лотерей с одним лототроном (без бонусных шаров)

    Используются только первые два поля, в которых числовая формула лотереи, например: — «5 из 36», «6 из 45», «7 из 49». В принципе, можно просчитать почти любую мировую лотерею. Есть только два ограничения: первое значение не должно превышать 30, а второе — 99.

    Если в лотерее не используются дополнительные номера*, то после выбора числовой формулы остается нажать кнопку рассчитать и результат готов. Не важно, вероятность какого события вы хотите узнать – выигрыш джекпота, приз второй/третьей категории или просто выяснить, сложно ли угадать 2-3 номера из нужного количества – результат высчитывается почти моментально!

    Пример расчета. Вероятность угадать 5 из 36 составляет 1 шанс из 376 992

    Примеры. Вероятности выигрыша главного приза для лотерей:
    «5 из 36» (Гослото, Россия) – 1:376 922
    «6 из 45» (Гослото, Россия; Saturday Lotto, Австралия; Lotto, Австрия) — 1:8 145 060
    «6 из 49» (Спортлото, Россия; La Primitiva, Испания; Lotto 6/49, Канада) — 1:13 983 816
    «6 из 52» (Super Loto, Украина; Illinois Lotto, США; Mega TOTO, Малазия) — 1:20 358 520
    «7 из 49» (Гослото, Россия; Lotto Max, Канада) — 1:85 900 584

    Лотереи с двумя лототронами (+ бонусный шар)

    Если в лотерее используется два лототрона, то для расчета необходимо заполнить все 4 поля. В первых двух – числовая формула лотереи (5 из 36, 6 из 45 и тд), в третьем и четвертом поле отмечается количество бонусных шаров (x из n). Важно: данный расчет можно использовать только для лотерей с двумя лототронами. Если бонусный шар достается из основного лототрона, то вероятность выигрыша именно этой категории считается по-другому.

    * Так как при использовании двух лототронов шанс выигрыша высчитывается перемножением вероятностей друг на друга, то для корректного расчета лотерей с одним лототроном выбор дополнительного номера по умолчанию стоит как 1 из 1, то есть не учитывается .

    Примеры. Вероятности выигрыша главного приза для лотерей:
    «5 из 36 + 1 из 4» (Гослото, Россия) – 1:1 507 978
    «4 из 20 + 4 из 20» (Гослото, Россия) – 1:23 474 025
    «6 из 42 + 1 из 10» (Megalot, Украина) – 1:52 457 860
    «5 из 50 + 2 из 10» (EuroJackpot) – 1:95 344 200
    «5 из 69 + 1 из 26» (Powerball, США) — 1: 292 201 338

    Пример расчет. Шанс угадать 4 из 20 дважды (в двух полях) составляет 1 к 23 474 025

    Хорошей иллюстрацией сложности игры с двумя лототронами служит лотерея «Гослото «4 из 20». Вероятность угадать 4 числа из 20 в одном поле вполне щадящая, шанс этого — 1 из 4 845. Но, когда угадать надо выиграть оба поля… то вероятность рассчитывается их перемножением. То есть, в данном случае 4 845 умножаем на 4 845, что дает 23 474 025. Так что, простота этой лотереи обманчива, выиграть в ней главный приз сложнее, чем в «6 из 45» или «6 из 49»

    Расчет вероятности (развернутые ставки)

    В данном случае считается вероятность выигрыша при использовании развернутых ставок. Для примера – если в лотерее 6 из 45, отметить 8 чисел то вероятность выиграть главный приз (6 из 45) составит 1 шанс из 290 895. Пользоваться ли развернутыми ставками – решать вам. С учетом того, что стоимость их получается очень высокая (в данном случае 8 отмеченных чисел это 28 вариантов) стоит знать как это увеличивает шансы на выигрыш. Тем более, что сделать это теперь совсем просто!

    Расчет вероятности выигрыша (6 из 45) на примере развернутой ставки (отмечено 8 чисел)

    И другие возможности

    При помощи нашего виджета можно просчитать вероятность выигрыша и в бинго-лотереях, например, в «Русское лото». Главное, что надо учитывать, это количество ходов, отведенных на наступление выигрыша. Чтобы было понятнее: долгое время в лотерее «Русское лото» джекпот можно было выиграть в том случае если 15 чисел (в одном поле ) закрывались за 15 ходов . Вероятность такого события совершенно фантастическая, 1 шанс из 45 795 673 964 460 800 (можете проверить и получить это значение самостоятельно). Именно поэтому, кстати, много лет в лотерее «Русское лото» никто не мог сорвать джекпот, и его распределяли принудительно.

    20.03.2016 правила лотереи «Русское лото» были изменены. Джекпот теперь можно выиграть, если 15 чисел (из 30) закрывались за 15 ходов . Получается аналог развернутой ставки — ведь 15 чисел угадываются из 30 имеющихся! А это уже совсем другая вероятность:

    Шанс выиграть джекпот (по новым правилам) в лотерее «Русское лото»

    И в заключение приведем вероятность выигрыша в лотереях, использующих бонусный шар из основного лототрона (наш виджет такие значения не считает). Из самых известных

    Спортлото «6 из 49» (Гослото, Россия), La Primitiva «6 из 49» (Испания)
    Категория «5 + бонусный шар»: вероятность 1:2 330 636

    SuperEnalotto «6 из 90» (Италия)
    Категория «5 + бонусный шар»: вероятность 1:103 769 105

    Oz Lotto «7 из 45» (Австралия)
    Категория «6 + бонусный шар»: вероятность 1:3 241 401
    «5 + 1» — вероятность 1:29 602
    «3 +1» — вероятность 1:87

    Lotto «6 из 59» (Великобритания)
    Категория «5 + 1 бонусный шар»: вероятность 1:7 509 579

    Выбор редакции
    Чеченская кухня одна из древнейших и самых простых. Блюда питательные, калорийные. Готовятся быстро из самых доступных продуктов. Мясо -...

    Пицца с сосисками готовится несложно, если есть качественные молочные сосиски или, хотя бы, нормальная вареная колбаса. Были времена,...

    Для приготовления теста потребуются ингредиенты: Яйца (3 шт.) Лимонный сок (2 ч. ложки) Вода (3 ст. ложки) Ванилин(1 пакетик) Сода (1/2...

    Планеты - являются сигнификаторами или же показателями качества энергии, той или иной сферы нашей жизни. Это ретрансляторы, принимающие и...
    Узники Освенцима были освобождены за четыре месяца до окончания Второй мировой войны. К тому времени осталось их немного. В погибло почти...
    Вариант сенильной деменции с атрофическими изменениями, локализующимися преимущественно в височных и лобных долях мозга. Клинически...
    Международный женский день, хоть и был изначально днем равенства полов и напоминанием, того, что женщины имеют те же права, что мужчины,...
    Философия оказала большое влияние на жизнь человека и общества. Несмотря на то, что большинство великих философов уже давно умерли, их...
    В молекуле циклопропана все атомы углерода расположены в одной плоскости.При таком расположении атомов углерода в цикле валентные углы...