Температурные шкалы. О различных температурных шкалах


Молекулярно-кинетическое определение

Измерение температуры

Для измерения температуры выбирается некоторый термодинамический параметр термометрического вещества. Изменение этого параметра однозначно связывается с изменением температуры.

На практике для измерения температуры используют

Единицы и шкала измерения температуры

Из того, что температура - это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (т.е. в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах - градусах.

Шкала температур Кельвина

Понятие абсолютной температуры было введено У. Томсоном (Кельвином), в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой. Единица абсолютной температуры - кельвин (К).

Абсолютная шкала температуры называется так, потому что мера основного состояния нижнего предела температуры - абсолютный ноль , то есть наиболее низкая возможная температура, при которой в принципе невозможно извлечь из вещества тепловую энергию.

Абсолютный ноль определён как 0 K, что приблизительно равно −273.15 °C.

Шкала температур Кельвина - температурная шкала, в которой начало отсчёта ведётся от абсолютного нуля .

Используемые в быту температурные шкалы - как Цельсия , так и Фаренгейта (используемая, в основном, в США), - не являются абсолютными и поэтому неудобны при проведении экспериментов в условиях, когда температура опускается ниже точки замерзания воды, из-за чего температуру приходится выражать отрицательным числом. Для таких случаев были введены абсолютные шкалы температур.

Одна из них называется шкалой Ранкина , а другая - абсолютной термодинамической шкалой (шкалой Кельвина); температуры по ним измеряются, соответственно, в градусах Ранкина (°Ra) и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля. Различаются они тем, что кельвин равен градусу Цельсия, а градус Ранкина - градусу Фаренгейта.

Температуре замерзания воды при стандартном атмосферном давлении соответствуют 273,15 K. Число градусов Цельсия и кельвинов между точками замерзания и кипения воды одинаково и равно 100. Поэтому градусы Цельсия переводятся в кельвины по формуле K = °C + 273,15.

Шкала Цельсия

Шкала Фаренгейта

В Англии и, в особенности, в США используется шкала Фаренгейта. Ноль градусов Цельсия - это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.

В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F - 32), 1 °F = 9/5 °С + 32. Предложена Г. Фаренгейтом в 1724.

Энергия теплового движения при абсолютном нуле

Когда материя охлаждается, многие формы тепловой энергии и связанные с ней эффекты одновременно уменьшаются по величине. Вещество переходит от менее упорядоченного состояния к более упорядоченному. Газ превращается в жидкость и затем кристаллизуется в твёрдое тело (гелий и при абсолютном нуле остается в жидком состоянии при атмосферном давлении). Движение атомов и молекул замедляется, их кинетическая энергия уменьшается. Сопротивление большинства металлов падает из-за уменьшения рассеяния электронов на колеблющихся с меньшей амплитудой атомах кристаллической решётки. Таким образом даже при абсолютном нуле электроны проводимости движутся между атомами со скоростью Ферми порядка 1x10 6 м/с.

Температура, при которой частицы вещества имеют минимальное количество движения, сохраняющееся только благодаря квантовомеханическому движению, - это температура абсолютного нуля (Т = 0К).

Температуры абсолютного нуля достичь невозможно. Наиболее низкая температура (450±80)x10 -12 К конденсата Бозе-Эйнштейна атомов натрия была получена в 2003 г. исследователями из МТИ . При этом пик теплового излучения находится в области длин волн порядка 6400 км, то есть примерно радиуса Земли.

Температура с термодинамической точки зрения

Существует множество различных шкал температур. Когда-то температура определялась очень произвольно. Мерой температуры служили метки, нанесённые на равных расстояниях на стенах трубочки, в которой при нагревании расширялась вода. Потом решили измерить температуру и обнаружили, что градусные расстояния не одинаковы. В термодинамике дается определение температуры, не зависящее от каких-либо частных свойств вещества.

Введем функцию f (T ) , которая не зависит от свойств вещества. Из термодинамики следует, что если какая-то тепловая машина, поглощая количество теплоты Q 1 при T 1 выделяет тепло Q s при температуре в один градус , а другая машина, поглотив тепло Q 2 при T 2 , выделяет то же самое тепло Q s при температуре в один градус, то машина, поглощающая Q 1 при T 1 должна при температуре T 2 выделять тепло Q 2 .

Конечно, между теплом Q и температурой T существует зависимость и тепло Q 1 должно быть пропорционально Q s . Таким образом, каждому количеству тепла Q s , выделенного при температуре в один градус, соответствует количество тепла, поглощённого машиной при температуре T , равное Q s , умноженному на некоторую возрастающую функцию f температуры:

Q = Q s f (T )

Поскольку найденная функция возрастает с температурой, то можно считать, что она сама по себе измеряет температуру, начиная со стандартной температуры в один градус. Это означает, что можно найти температуру тела, определив количество тепла, которое поглощается тепловой машиной, работающей в интервале между температурой тела и температурой в один градус. Полученная таким образом температура называется абсолютной термодинамической температурой и не зависит от свойств вещества. Таким образом, для обратимой тепловой машины выполняется равенство:

Для системы, в которой энтропия S может быть функцией S (E ) её энергии E , термодинамическая температура определяется как:

Температура и излучение

При повышении температуры растёт энергия, излучаемая нагретым телом. Энергия излучения абсолютно чёрного тела описывается законом Стефана - Больцмана

Шкала Реомюра

Предложена в году Р. А. Реомюром , который описал изобретённый им спиртовой термометр.

Единица - градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками - температурой таяния льда (0 °R) и кипения воды (80 °R)

1 °R = 1,25° C.

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции , на родине автора.

Переходы из разных шкал

Сравнение температурных шкал

Сравнение температурных шкал
Описание Кельвин Цельсий Фаренгейт Ранкин Делиль Ньютон Реомюр Рёмер
Абсолютный ноль 0 −273.15 −459.67 0 559.725 −90.14 −218.52 −135.90
Температура таяния смеси Фаренгейта (соль и лёд в равных количествах) 255.37 −17.78 0 459.67 176.67 −5.87 −14.22 −1.83
Температура замерзания воды (Нормальные условия) 273.15 0 32 491.67 150 0 0 7.5
Средняя температура человеческого тела ¹ 310.0 36.6 98.2 557.9 94.5 12.21 29.6 26.925
Температура кипения воды (Нормальные условия) 373.15 100 212 671.67 0 33 80 60
Плавление титана 1941 1668 3034 3494 −2352 550 1334 883
Поверхность Солнца 5800 5526 9980 10440 −8140 1823 4421 2909

¹ Нормальная средняя температура человеческого тела - 36.6 ° C ±0.7 ° C, или 98.2 °F ±1.3 °F. Приводимое обычно значение 98.6 °F - это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 ° C. Однако это значение не входит в диапазон нормальной средней температуры тела человека, поскольку температура разных частей тела разная

В настоящее время рекомендована к применению Международ­ная практическая температурная шкала МПШТ-68. Единицей тем­пературы утвержден Кельвин (К). Температуру, определяемую по этой шкале, называют термодинамической Т (например, T = 300 К).

Допускается использовать также температуру t по шкале Цель­сия, определяемую выражением

t = Т - 273,15. (2)

Эта температура выражается в градусах Цельсия °С (например, t = 20 °С). Кельвин и градус Цельсия имеют одинаковую величину и оба равны 1/100 разности температур кипения и замерзания воды при атмосферном давлении.

Шкалы Кельвина и Цельсия отличаются только точкой отсчета: нуль в шкале Кельвина сдвинут вниз на 273,15 К по сравнению со шкалой Цельсия. Температура по шкале Цельсия может быть отри­цательной t < 0 °С, тогда как термодинамическая температура всег­да положительна Т > 0. При приближении термодинамической тем­пературы к нулю (T > 0) внутри тела молекулы постепенно замед­ляют свое колебательное движение около состояния равновесия, и при Т = 0 оно прекращается.

Своеобразными «хранителями» температурных шкал являются постоянные температуры фазового равновесия между двумя или тремя фазами вещества: температуры кипения и затвердевания, температуры тройных точек. Эти значения температур называются опорными, реперными точками. Значения основных реперных точек МПШТ-68 приведены в табл. 1.

Таблица1. Основные реперные точки МПШТ-68

Равновесное состояние

Тройная точка водорода

Тройная точка кислорода

Точка кипения кислорода

Точка замерзания воды

Тройная точка воды

Точка кипения воды

Точка затвердевания цинка

Точка затвердевания серебра

Точка затвердевания золота

За рубежом до сих пор довольно часто применяются темпера­турные шкалы Фаренгейта (t , °F) и Ренкина (T, °R). Они выража­ются следующим образом через температуры Цельсия и Кельвина соответственно:

t °С = (t ° F - 32)/1,8; (3)

T = T ° R / 1,8 . (4)

4. Методы измерения температуры

Температура является мерой кинетической энергии составляю­щих тело молекул. Кинетическую же энергию составляю­щих тело молекул измерить невозможно. Поэтому для измерения температуры применяют косвенные методы, в которых используют зависимость каких-либо свойств вещества от температуры и по изменению этих свойств судят об изменении тем­пературы. Такими свойствами являются объем вещества, давление насыщенного пара, электрическое сопротивление, термоэлектродви­жущая сила, тепловое излучение и др.

Стеклянные жидкостные термометры. Принцип действия стек­лянных жидкостных термометров основан на температурном расши­рении жидкостей. Для того чтобы изменение объема жидкости при изменении температуры было отчетливо видно, обычно к заключен­ному в резервуар объему жидкости примыкает трубка с тонким ка­налом - капилляром. Свободная поверхность жидкости находится в этом капилляре, в результате чего небольшие температурные изме­нения объема жидкости вызывают значительное отчетливо наблюда­емое перемещение свободной поверхности мениска в капилляре. При известных температурах t 1 и t 2 определяются два положения мениска, после чего расстояние между ними делится на равные от­резки, числом равные t 1 - t 2 . Таким образом градуируется термо­метр, и только после нанесения этих делений на шкалу он может быть использован для измерения.

Стеклянные термометры можно применять для измерения темпе­ратур в интервале от -200 до +750 °С, но обычно до температур, не превышающих 150-200 °С. Для их заполнения, в зависимости от диапа­зона измеряемых температур, используются различные, обычно подкра­шиваемые жидкости: ртуть, толуол, этиловый спирт и т.д.

Недостатки жидкостных термометров: сравнительно большой размер, необходи­мость визуального определения температуры и невозможность представления показаний в виде электрического сигнала.

Термометры сопротивления. В термо­метрах сопротивления используется свойство изменения электрического сопротивления металлов при изменении его температуры. Термометры сопротивления применяются для измерения широкого диапазона темпе­ратур. Платиновый термометр сопротивле­ния является эталонным прибором для из­мерения температур в интервале от 13,81 до 903,89 К. Конструкция платинового термометра сопротивления представлена на рис. 2. Платиновая проволока диамет­ром 0,05-0,10 мм, свитая в спираль, уло­жена на кварцевом каркасе геликоидной формы. К концам спирали припаяны вы­воды из платиновой проволоки. Все ус­тройство помещено в защитную кварцевую трубку. Сопротивление платинового тер­мометра измеряют обычно потенциометрическим способом (принципиальная схе­ма приведена на рис. 3).

Рис. 2. Платиновый термометр сопротивления: а - чувствительная часть, б - головка термометра; 1 - защитная кварцевая трубка; 2 - кварцевый каркас; 3 - спираль из платиновой проволоки; 4 - платиновые выводы; 5 - контактные винты; 6 - изоляционная прокладка

Вместо платины в термометрах сопротивления можно применять и другие металлы или полупроводниковые материалы. Основным недостатком термометров сопротивления являются достаточно большие габариты чувствительной части.

Рис. 3. Принципиальная схема измерения сопротивления платинового термометра:

1 - потенциометр

Термоэлектрические термометры. Термоэлектрические термо­метры (термопары) получили широкое распространение как в лабо­раторной практике, так и в промышленном производстве. Это объясняется их уникальными свойствами.

Термопара представляет собой два разнородных металлических проводника (проволочки различных металлов), составляющих общую электрическую цепь. Если температуры мест соединений (спаев) про­водников t 1 и t 2 неодинаковы, то возникает термоЭДС и по цепи проте­кает электрический ток. Причиной возникновения термоЭДС является различная плотность свободных электронов в различных металлах при одинаковой температуре. ТермоЭДС тем больше, чем больше разность температур спаев. По величине термоЭДС судят о разности температур спаев.

Электродами термопары являются проволока диаметром 0,1-3,2 мм. Используются следующие термопары: платинородий-платиновая (от 0 до 1300 °С), платинородиевая (от 300 до 1600 °С), вольфрамрениевая (от 0 до 2200 °С), хромель-алюмелевая (от -200 до 1000 °С), хромель-копелевая (от -50 до 600 °С), медь-копелевая (от -200 до 100 °С) и другие.

При измерении температуры один спай цепи термопары, так на­зываемый холодный спай, находится при 0 °С (в тающем льде в со­суде Дьюара), а другой - горячий спай - в среде, температуру которой нужно измерить. Таблицы термоЭДС термопар составлены именно для этого случая. Если по каким-либо причинам не удается поместить холодный спай в среду с температурой 0 °С и он нахо­дится при комнатной температуре (например при 20 °С), то в этом случае возникающая термоЭДС соответствует разности температур горячего и холодного спаев и при определении температуры нужно ввести поправку на холодный спай. Для этого необходимо измерен­ную термоЭДС сложить с термоЭДС, соответствующей температуре холодного спая (20 °С), и по полученному значению определить температуру при помощи таблиц.

По схеме соединения различают термопары с одним и двумя хо­лодными спаями.

Рис.4. Типы термопар: 1 –горячий спай; 2 – холодный спай

Схема термопары с одним холодным спаем изображена на рис. 4,а. Вся цепь выполняется из двух разнородных проводников. В цепь включен милливольтметр для измерения термоЭДС.

Схема с двумя холодными спаями представлена на рис. 4,6. Отличие этой схемы от первой заключается в том, что в цепь термопары вводятся медные провода. Медные провода изображены сплошной линией. Такая схема обычно и используется на практике ввиду того что измерительный прибор может находиться на значительном удалении от места измерения температуры.

Существенным достоинством термопар и термометров сопротивления является то, что они преобразуют значения измеряемой температуры в величину электрического сигнала. Это дает возможность передавать сигнал на большие расстояния, а также использовать его в качестве управляющего сигнала в системах автоматического регулирования и управления.

Инфракрасные термометры. Инфракрасные термометры содержат высокочувствительный датчик, который преобразует энергию инфракрасного (теплового) излучения поверхности объекта в электрический сигнал. Затем эта информация преобразуется в температурные данные, выводимые в цифровом виде на дисплей. Количественное соотношение между интенсивностью теплового излучения поверхности и ее температурой устанавливается законом Стефана-Больцмана для теплового излучения. Диапазон измерения температуры таким прибором от -50 о С до 1500 о С.

Инфракрасный термометр позволяет измерять температуру поверхности бесконтактным способом и на значительном расстоянии. Это делает его особенно удобным в тех случаях, когда другие методы измерения температуры непригодны. Например, если нужно измерить температуру движущегося предмета, поверхности под напряжением или труднодоступной поверхности. Прибор обычно изготавливается в форме пистолета. Для выбора точки измерения температуры на поверхности используется лазерный целеуказатель.

Температурные шкалы

Первым устройством, созданным для измерения температуры, считают водяной термометр Галилея (1597 г.). Термометр Галилея не имел шкалы и был, по существу, лишь индикатором температуры. Полвека спустя, в 1641 г., неизвестным для нас автором был изготовлен термометр со шкалой, имеющей произвольные деления. Спустя еще полвека Ренальдини впервые предложил принять в качестве постоянных точек, характеризующих тепловое равновесие, точки плавления льда и кипения воды. При этом температурной шкалы еще не существовало. Первая температурная шкала была предложена и осуществлена Д.Г. Фаренгейтом (1724 г). Температурные шкалы устанавливались произвольным выбором нулевой и других постоянных точек и произвольным принятием интервала температуры в качестве единицы. Фаренгейт не был ученым. Он занимался изготовлением стеклянных приборов. Ему стало известно, что высота столба ртутного барометра зависит от температуры. Это навело его на мысль создать стеклянный ртутный термометр с градусной шкалой. В основу своей шкалы он положил три точки: 1 - "точка сильнейшего холода (абсолютный нуль)", получаемая при смешениях в определенных пропорциях воды, льда и нашатыря, и принятая им за нулевую отметку (по нашей современной шкале, равная примерно -17,8°С); 2- точка плавления льда, обозначенная им +32°, и 3 - нормальная температура человеческого тела, обозначенная +96° (по нашей шкале +35,6°С). Температура кипения воды первоначально не нормировалась и лишь позднее была установлена +212° (при нормальном атмосферном давлении).

Через несколько лет, в 1731 г. Р.А. Реомюр предложил использовать для стеклянных термометров спирт такой концентрации, который при температуре плавления льда заполнял бы объем в 1000 объемных единиц, а при температуре кипения расширялся бы до 1080 единиц. Соответственно температуру плавления льда Реомюр предложил первоначально обозначить 1000°, а кипения воды 1080 0 (позднее 0° и 80°).

В 1742 г. А. Цельсий, используя ртуть в стеклянных термометрах, обозначил точку плавления льда за 100°, а точку кипения воды за 0°. Такое обозначение оказалось неудобным и спустя 3 года Штремер (или возможно К. Линней) предложил изменить обозначения, принятые вначале Цельсием, на обратные. Был предложен и ряд других шкал. М. В. Ломоносов предложил жидкостный термометр со шкалой 150° в интервале от точки плавления льда до точки кипения воды.

И.Г. Ламберт (1779 г.) предлагал воздушный термометр со шкалой 375°, принимая за 1° одну тысячную часть расширения объема воздуха. Известны также попытки создать термометры на основе расширения твердых тел (П. Мушен-брук, 1725 г.)

Все предлагаемые температурные шкалы строились (за редким исключением) одинаковым путем: двум (по меньшей мере) постоянным точкам присваивались определенные числовые значения и предполагалось, что видимое термометрическое свойство используемого в термометре вещества линейно связано с температурой. Но в дальнейшем выяснилось, что термометры, построенные на базе различных термометрических веществ с равномерной градусной шкалой, давали при температурах, отличающихся от температур постоянных точек, различные показания. Последние становились особенно заметными при высоких (много больших температуры кипения воды) и очень низких температурах.

В 1848 г. Кельвин (У. Томсон) предложил построить температурную шкалу на термодинамической основе, приняв за нулевое значение температуру абсолютного нуля и обозначив температуру плавления льда +273,1°. Термодинамическая температурная шкала базируется на втором законе термодинамики. Как известно, работа в цикле Карно пропорциональна разности температур и не зависит от термометрического вещества. Один градус по термодинамической шкале соответствует такому повышению температуры, которое отвечает 1/100 части работы по циклу Карно между точками плавления льда и кипения воды при нормальном атмосферном давлении. Термодинамическая шкала тождественна шкале идеального газа, построенной на зависимости давления идеального газа от температуры. Законы изменения давления от температуры для реальных газов отклоняются от идеальных, но поправки на отклонения реальных газов невелики и могут быть установлены с высокой степенью точности. Поэтому, наблюдая за расширением реальных газов и вводя поправки, можно оценить температуру по термодинамической шкале.

По мере расширения научных наблюдений и развития промышленного производства возникла естественная необходимость установить какую-то единую температурную шкалу. Первая попытка в этом направлении была предпринята в 1877 г., когда Международный комитет мер и весов принял в качестве основной температурной шкалы стоградусную водородную шкалу. За нулевую отметку была принята точка таяния льда, а за 100° - точка кипения воды при нормальном атмосферном давлении 760 мм. рт. ст. Температура определялась по давлению водорода в постоянном объеме. Нулевая отметка соответствовала давлению 1000 мм. рт. ст. Градусы температуры по этой шкале очень близко совпадали с градусами термодинамической шкалы, однако практическое применение водородного термометра ограничивалось из-за небольшого интервала температур примерно от -25 до +100°. В начале XX в. широко применялись шкалы Цельсия (или Фаренгейта - в англо-американских странах) и Реомюра, а в научных работах - также шкалы Кельвина и водородная.

Международная температурная шкала

При резко возросших потребностях в точной оценке температуры пересчеты с одной шкалы на другую создавали большие трудности и приводили к ряду недоразумений. Поэтому после нескольких лет подготовки и предварительных временных решений VIII Генеральная конференция мер и весов приняла в 1933 г. решение о введении Международной температурной шкалы (МТШ). Это решение было в законодательном порядке утверждено большинством развитых стран мира. В СССР Международная температурная шкала была введена с 1 октября 1934 г. (Общесоюзный стандарт ОСТ ВКС 6954).

Международная температурная шкала является практическим осуществлением термодинамической стоградусной температурной шкалы, у которой температура плавления льда и температура кипения воды при нормальном атмосферном давлении соответственно-обозначены через 0° и 100°. МТШ основывается на системе постоянных, точно воспроизводимых температур равновесия (постоянных точек), которым присвоены числовые значения. Для определения промежуточных температур служат интерполяционные приборы, градуированные по этим постоянным точкам. Температуры, измеряемые по международной шкале, обозначаются через СС. В отличие от градусов шкалы Цельсия - базирующейся также на точках плавления льда и кипения воды при нормальном атмосферном давлении и имеющей обозначения 0° и 100°С, но построенной на иной основе (на линейной зависимости между температурой и расширением ртути в стекле), градусы по международной шкале стали называть "градусами международными" или "градусами стоградусной шкалы". Основные постоянные точки МТШ и присвоенные им числовые значения температур при нормальном атмосферном давлении приводятся ниже: (так же см. рис. №1):

а) температура равновесия между жидким и газообразным кислородом (точка кипения кислорода) - 182,96°

б) температура равновесия между льдом и водой, насыщенной воздухом (точка плавления льда) 0.000°

в) температура равновесия между жидкой водой и ее паром (точка кипения воды) 100,000°

г) температура равновесия между жидкой серой и ее паром (точка кипения серы) 414,60°

д) температура равновесия между твердым и жидким серебром (точка затвердевания серебра) 961.93°

е) температура равновесия между твердым и жидким золотом (точка затвердевания золота) 1064,43°

Рис. № 1 Международная температурная шкала

Температурные шкалы

Температурной шкалой называют конкретную функциональную числовую связь температуры со значениями измеряемого термометрического свойства. В связи с этим представляется возможным построение температурной шкалы на основе выбора любого термометрического свойства. В то же время нет ни одного термометрического свойства, которое линейно изменяется с

изменением температуры и не зависит от других факторов в широком интервале измерения температур. Первые шкалы появились в XVIII в. Для построения их выбирались две опорные, или реперные точки t 1 и t 2 , представляющие собой температуры фазового равновесия чистых веществ. Разность температур t 1 –t 2 называют основным температурным интервалом.

Фаренгейт (1715 г.), Реомюр (1776 г.) и Цельсий (1742 г.) при построении шкал основывались на допущении линейной связи между температурой t и термометрическим свойством, в качестве которого использовалось расширение объема жидкости V (формула 14.27) /8/

t=a+bV, (14.27)

где а и b - постоянные коэффициенты.

Подставив в уравнение (14.27) V=V 1 при t=t 1 и V=V 2 при t=t 2 , после преобразований получим уравнение (14.28) температурной шкалы /8/

В шкалах Фаренгейта, Реомюра и Цельсия точке плавления льда t 1 соответствовали +32, 0 и 0 °, а точке кипения воды t 2 - 212, 80 и 100 °. Основной интервал t 2 –t 1 в этих шкалах делится соответственно на N = 180, 80 и 100 равных частей, и 1/N часть каждого из интервалов называют градусом Фаренгейта - t °F , градусом Реомюра – t °R и градусом Цельсия-t °С. Таким образом, для шкал, построенных по указанному принципу, градус не является единицей измерения, а представляет собой единичный промежуток - масштаб шкалы.

Для пересчета температуры из одной указанной шкалы в другую используют соотношение (14.29)

t °С= 1,25 °R =-(5/9)( - 32), (14.29)

Позднее было выяснено, что показания термометров, имеющих разные термометрические вещества (например, ртуть, спирт и др.), использующих одно и то же термометрическое свойство и равномерную градусную шкалу, совпадают лишь в реперных точках, а в других точках показания расходятся. Последнее особенно заметно при измерении температур, значения которых расположены далеко от основного интервала.

Указанное обстоятельство объясняется тем, что связь между температурой и термометрическим свойством на самом деле нелинейна и эта нелинейность различна для различных термометрических веществ. В частности, в рассматриваемом случае нелинейность между температурой и изменением объема жидкости объясняется тем, что температурный коэффициент объемного расширения жидкости сам изменяется от температуры и это изменение различно для различных капельных жидкостей.

На основе описанного принципа построения может быть получено любое количество температурных шкал, значительно различающихся между собой. Такие шкалы называют условными, а масштабы этих шкал - условными градусами. Проблема создания температурной шкалы, не зависящей от термометрических свойств веществ, была решена в 1848 г. Кельвином, а предложенная им шкала была названа термодинамической. В отличие от условных температурных шкал термодинамическая температурная шкала является абсолютной.

Термодинамическая шкала температур основана на использовании второго закона термодинамики. В соответствии с этим законом коэффициент полезного действия тепловой машины, работающей по обратимому циклу Карно, определяется только температурами нагревателя Т Н и холодильника Т X и не зависит от свойств рабочего вещества, таким образом коэффициент полезного действия вычисляют по формуле (14.30) /8/

(14.30)

где Q Н и Q X - соответственно количество теплоты, полученное рабочим веществом от нагревателя и отданное холодильнику.

Кельвином было предложено для определения температуры использовать равенство (14.31) /8/

T Н /Т X = Q Н /Q X , (14.31)

Следовательно, используя один объект в качестве нагревателя, а другой - в качестве холодильника и проводя между ними цикл Карно, можно определить отношение температур объектов путем измерения отношения теплоты, взятой от одного объекта и отданной другому. Полученная шкала температур не зависит от свойств рабочего (термометрического) вещества и называется абсолютной шкалой температур. Чтобы абсолютная температура (а не только отношение) имела определенное значение, было предложено принять разность термодинамических температур между точками кипения воды Т КВ и таяния льда Т ТЛ , равной 100 °. Принятие такого значения разности преследовало цель сохранения преемственности числового выражения термодинамической температурной шкалы от стоградусной температурной шкалы Цельсия. Таким образом, обозначая количество теплоты, полученной от нагревателя (кипящая вода) и отдаваемой холодильнику (тающий лед), соответственно через Q КВ и Q ТЛ и приняв Т КВ – Т ТЛ ==100, используя (14.31), получим равенство (14.32) и (14.33)

(14.32)

(14.33)

Для любой температуры Т нагревателя при неизменном значении температуры Т ТЛ холодильника и количества теплоты Q ТЛ , отдаваемой ему рабочим веществом машины Карно, будем иметь равенство (14.34) /8/

(14.34)

Выражение (14.34) является уравнением стоградусной термодинамической шкалы температур и показывает, что значение температуры Т по данной шкале линейно связано с количеством теплоты Q , полученной рабочим веществом тепловой машины при совершении ею цикла Карно, и, как следствие, не зависит от свойств термометрического вещества. За один градус термодинамической температуры принимают такую разность между температурой тела и температурой таяния льда, при которой производимая по обратимому циклу Карно работа равна 1/100 части работы, совершаемой в цикле Карно между температурой кипения воды и таяния льда (при условии, что в обоих циклах количество теплоты, отдаваемой холодильнику, одинаково). Из выражения (14.30) следует, что при максимальном значении должна быть равна нулю Т X . Эта наименьшая температура была названа Кельвином абсолютным нулем. Температуру по термодинамической шкале обозначают Т К. Если в выражение, описывающее газовый закон Гей-Люссака: (где Ро - давление при t=0 °С ; -температурный коэффициент давления), подставить значение темпе­ратуры, равное - , то давление газа P t станет равным нулю. Естественно предположить, что температура , при которой обеспечивается предельное минимальное давление газа, сама является минимально возможной, и по абсолютной шкале Кельвина принята за нуль. Следовательно, абсолютная температура .



Из закона Бойля-Мариотта известно, что для газов температурный коэффициент давления а равен температурному коэффициенту объемного расширения . Экспериментально было найдено, что для всех газов при давлениях, стремящихся к нулю, в интервале температур 0-100 °С температурный коэффициент объемного расширения = 1/273,15.

Таким образом, нулевое значение абсолютной температуры соответствует °С. Температура таяния льда по абсолютной шкале составит ==273,15 К. Любая температура в абсолютной шкале Кельвина может быть определена как (где t температура в °С). Необходимо отметить, что один градус Кельвина (1 К) соответствует одному градусу Цельсия (1 °С), так как обе шкалы базируются на одинаковых реперных точках. Термодинамическая шкала температур, основанная на двух реперных точках (температура таяния льда и кипения воды), обладала недостаточной точностью измерения. Практически трудно воспроизвести температуры указанных точек, так как они зависят от изменения давления, а также от незначительных примесей в воде. Кельвин и независимо от него Д. И. Менделеев высказали соображения о целесообразности построения термодинамической шкалы температур по одной реперной точке. Консультативный комитет по термометрии Международного комитета мер и весов в 1954 г. принял рекомендацию о переходе к определению термодинамической шкалы с использованием одной реперной точки - wтройной точки воды (точки равновесия воды в твердой, жидкой и газообразной фазах), которая легко воспроизводится в специальных сосудах с погрешностью не более 0,0001 К. Температура этой точки принята равной 273,16 К, т.е. выше температуры точки таяния льда на 0,01 К. Такое число выбрано для того, чтобы значения температур по новой шкале практически не отличались от старой шкалы Цельсия с двумя реперными точками. Второй реперной точкой является абсолютный нуль, который экспериментально не реализуется, но имеет строго фиксированное положение. В 1967 г. XIII Генеральная конференция по мерам и весам уточнила определение единицы термодинамической температуры в следующей редакции: «Кельвин-1/273,16 часть термодинамической температуры тройной точки воды». Термодинамическая температура может быть также выражена в градусах Цельсия: t = Т- 273,15 К. Использование второго закона термодинамики, предложенное Кельвином с целью установления понятия температуры и построения абсолютной термодинамической температурной шкалы, не зависящей от свойств термометрического вещества, имеет огромное теоретическое и принципиальное значение. Однако реализация указанной шкалы с использованием в качестве термометра тепловой машины, работающей по обратимому циклу Карно, практически неосуществима.

Термодинамическая температура эквивалентна газотермической, используемой в уравнениях, описывающих законы идеальных газов. Газотермическую температурную шкалу строят на основе газового термометра, в котором в качестве термометрического вещества используется газ, приближающийся по свойствам к идеальному газу. Таким образом, газовый термометр является реальным средством для воспроизведения термодинамической температурной шкалы. Газовые термометры бывают трех типов: постоянного объема, постоянного давления и постоянной температуры. Обычно применяют газовый термометр постоянного объема (рисунок 14.127), в котором изменение температуры газа пропорционально изменению давления. Газовый термометр состоит из баллона 1 и соединительной трубки 2, заполненных через вентиль 3 водородом, гелием или азотом (для высоких температур). Соединительная трубка 2 подсоединена к трубке 4 двухтрубного манометра, у которого трубку 5 можно перемещать вверх или вниз благодаря гибкому соединительному шлангу 6. При изменении температуры объем системы, заполненной газом, изменяется, и для приведения его к первоначальному значению трубку 5 вертикально перемещают до тех пор, пока уровень ртути в трубке 4 не совпадет с осью Х-Х. При этом столб ртути в трубке 5, отсчитанный от уровня Х-Х, будет соответствовать давлению газа Р в баллоне.

Рисунок 14.127 – Схема газового термометра

Обычно измеряемую температуру Т определяют относительно некоторой точки отсчета, например по отношению к температуре тройной точки воды T 0 , при которой давление газа в баллоне будет Ро . Искомая температура вычисляется по формуле (14.35)

(14.35)

Газовые термометры используют в интервале ~ 2- 1300 К. Погрешность газовых термометров находится в пределах 3-10- 3 - 2-10- 2 К в зависимости от измеряемой температуры. Достижение такой высокой точности измерения -сложная задача, требующая учета многочисленных факторов: отклонения свойств реального газа от идеального, наличие примесей в газе, сорбцию и десорбцию газа стенками баллона, диффузию газа через стенки, изменение объема баллона от температуры, распределение температуры вдоль соединительной трубки.

В силу большой трудоемкости работы с газовыми термометрами предпринимались попытки изыскать более простые методы воспроизведения термодинамической температурной шкалы.

На основе проведенных в различных странах исследований на VII Генеральной конференции по мерам и весам в 1927 г. было принято термодинамическую шкалу заменить «практической» температурной шкалой и назвать ее международной температурной шкалой. Эта шкала была согласована со стоградусной термодинамической шкалой настолько тесно, насколько позволял уровень знаний того времени.

Для построения международной температурной шкалы было выбрано шесть воспроизводимых реперных точек, значения температуры которых по термодинамической шкале были тщательно измерены в различных странах с помощью газовых термометров и приняты наиболее достоверные результаты. С помощью реперных точек градуируются эталонные приборы для воспроизведения международной температурной шкалы. В интервалах между реперными точками значения температур рассчитывают по предлагаемым интерполяционным формулам, устанавливающим связь между показаниями эталонных приборов и температурой по международной шкале. В 1948, 1960 и 1968 гг. в положения о международной температурной шкале был внесен ряд уточнений и дополнений, так как на основе усовершенствованных методов измерений были обнаружены отличия этой шкалы от термодинамической, особенно в области высоких температур, а также в связи с необходимостью продлить температурную шкалу до более низких температур. В настоящее время действует принятая на XIII конференции по мерам и весам усовершенствованная шкала под названием «международная практическая температурная шкала 1968» (МПТП-68). Определение «практическая» указывает, что эта температурная шкала в общем не совпадает с термодинамической. Температуры МПТШ-68 снабжаются индексом (T 68 или t 68 ).

МПТШ-68 базируется на 11 основных реперных точках, приведенных в таблице 9. Наряду с основными имеется 27 вторичных реперных точек, охватывающих диапазон температур от 13,956 до 3660 К (от - 259,194 до 3387 °С). Числовые значения температур, приведенные в таблице 14.4, соответствуют термодинамической шкале и определены с помощью газовых термометров.

В качестве эталонного термометра в интервале температур от 13,81 до 903,89 К (630,74 °С - точка затвердевания сурьмы-вторичная реперная точка) принимается платиновый термопреобразователь сопротивления. Этот интервал разбит на пять подынтервалов, для каждого из которых определены интерполяционные формулы в виде полиномов до четвертой степени. В интервале температур от 903,89 до 1337,58 К используется эталонный платина-платинородиевый термоэлектрический термометр. Интерполяционной формулой, связывающей термоэлектродвижущую силу с температурой, здесь является полином второй степени.

Для температур выше 1337,58 К (1064,43°С) МПТШ-68 воспроизводится с помощью квазимонохроматического термометра с использованием закона излучения Планка.

Таблица 14.4 - Основные реперные точки МПТШ-68

Зачем в физике применяются несколько шкал измерения температуры ? Ну ведь есть - "по Цельсию" - и хватило бы , а то - "по Фаренгейту", "по Реомюру", "по Кельвину", да ещё и "по Ранкину", "по Ньютону"... каждый хотел встрять в историю и в науку.

История

Слово «температура» возникло в те времена, когда люди считали, что в более нагретых телах содержится большее количество особого вещества — теплорода, чем в менее нагретых. Поэтому температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково — градусами.

Из того, что температура - это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (т.е. в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах — градусах.

Шкала Кельвина (K)

Была предложена в 1848 году английским ученым Уильямом Томсоном (он же лорд Кельвин ) как более точный способ измерения температуры. По этой шкале нулевая точка, или абсолютный нуль, представляет собой самую низкую температуру, какая только возможна, т. е. некое теоретическое состояние вещества, при котором его молекулы полностью перестают двигаться. это значение было получено путём теоретического изучения свойств газа, находящегося под нулевым давлением. По стоградусной шкале абсолютный нуль, или нуль Кельвина, соответствует -273,15ºС. Следовательно на практике 0ºС может быть приравнен к 273К. До 1968 года единица измерения кельвин (К) именовалась как градус Кельвина (ºК). Используется в термодинамике.

Температура отсчитывается от абсолютного нуля (состояние, соответствующее минимальной теоретически возможной внутренней энергии тела), а один кельвин равен 1/273.15 расстояния от абсолютного нуля до тройной точки воды (состояния, при котором лёд, вода и водяной пар находятся в равновесии). Для пересчета кельвинов в энергетические единицы служит постоянная Больцмана. Используются также производные единицы: килокельвин, мегакельвин, милликельвин и т.д.

Шкала Цельсия (ºC)

В 1742 году шведский астроном Андерс Цельсий предложил свою шкалу, в которой за нуль принималась температура смеси воды и льда, а температура кипения воды приравнивалась к 100º. За градус принимается сотая часть интервала между этими реперными точками. Эта шкала более рациональна, чем шкалы Фаренгейта и Реомюра, и широко используется в науке и в быту.

Поскольку температура замерзания и кипения воды недостаточно хорошо определена, в настоящее время шкалу Цельсия определяют через шкалу Кельвина: градус Цельсия равен кельвину, абсолютный ноль принимается за −273,15 °C. Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия — особая точка для метеорологии, поскольку замерзание атмосферной воды существенно всё меняет.

Шкала Фаренгейта (ºF)

Была предложена зимой 1724 года немецким учёным Габриэлем Фаренгейтом . По этой шкале за нуль принималась точка, до которой в один очень холодный зимний день (дело было в Данциге и там жил Фаренгейт) опустилась ртуть в термометре учёного. В качестве другой отправной точки он выбрал температуру человеческого тела. Этот интервал разделен на 100 градусов. По этой не слишком логичной системе точка замерзания воды (то есть - ноль градусов Цельсия) на уровне моря оказалась равной +32º, а точка кипения воды +212º. Шкала популярна в Великобритании и, в особенности, в США.

Градус Фаренгейта равен 5/9 градуса Цельсия.

В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F - 32), 1 °F = 5/9 °С.


Шкала Реомюра (ºR)

В 1731 году французский учёный Рене Антуан де Реомюр предложил температурную шкалу, основанную на использовании спирта, обладающего свойством расширяться (вместе с описанием изобретённым им спиртовым термометром). За нижнюю реперную точку была принята точка замерзания воды. Градус Реомюр произвольно определил как одну тысячную от объёма, который занимает спирт в резервуаре и трубке термометра при нулевой точке. При нормальных условиях точка кипения воды по этой шкале составляет 80º. Шкала Реомюра ныне повсеместно вышла из употребления.

Единица — градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками — температурой таяния льда (0 °R) и кипения воды (80 °R)

1 °R = 1,25 °C.

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.

Шкала Ранкина (ºRa)

Была предложена шотландским инженером и физиком Уильямом Ранкином (Уильям Джон Макуорн Ранкин (Ренкин)) . Нуль её совпадает с нулём термодинамической температуры, а по размеру 1ºRa равен 5/9 К. Т. е. принцип тот же, что и в шкале Кельвина, только по размерности шкала Ранкина совпадает не со шкалой Цельсия, а со шкалой Фаренгейта. Данная система измерения температуры распространения не получила.

Пересчёт температуры между основными шкалами

Кельвин

Цельсий

Фаренгейт

Кельвин (K)

С + 273,15

= (F + 459,67) / 1,8

Цельсий (°C)

K − 273,15

= (F − 32) / 1,8

Фаренгейт (°F)

K · 1,8 − 459,67

C · 1,8 + 32


Сравнение температурных шкал

Описание

Кельвин Цельсий

Фаренгейт

Ньютон Реомюр
Абсолютный ноль

−273.15

−459.67

−90.14

−218.52

Температура таяния смеси Фаренгейта (соли и льда в равных количествах)

255.37

−17.78

−5.87

−14.22

Температура замерзания воды (нормальные условия)

273.15

Средняя температура человеческого тела ¹

310.0

36.8

98.2

12.21

29.6

Температура кипения воды (нормальные условия)

373.15

100

212

Температура поверхности Солнца

5800

5526

9980

1823

4421


¹ Нормальная температура человеческого тела — 36.6 °C ±0.7 °C, или 98.2 °F ±1.3 °F. Приводимое обычно значение 98.6 °F - это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 °C. Поскольку это значение не входит в диапазон нормальной температуры по современным представлениям, можно говорить, что оно содержит избыточную (неверную) точность. Некоторые значения в этой таблице были округлены.


Сопоставление шкал Фаренгейта и Цельсия

( o F - шкала Фаренгейта, o C - шкала Цельсия)

o F

o C

o F

o C

o F

o C

o F

Выбор редакции
В.И. Бородин, ГНЦ ССП им. В.П. Сербского, Москва Введение Проблема побочных эффектов лекарственных средств была актуальной на...

Добрый день, друзья! Малосольные огурцы - хит огуречного сезона. Большую популярность быстрый малосольный рецепт в пакете завоевал за...

В Россию паштет пришел из Германии. В немецком языке это слово имеет значение «пирожок». И первоначально это был мясной фарш,...

Простое песочное тесто, кисло-сладкие сезонные фрукты и/или ягоды, шоколадный крем-ганаш — совершенно ничего сложного, а в результате...
Как приготовить филе минтая в фольге - вот что необходимо знать каждой хорошей хозяйке. Во-первых, экономно, во-вторых, просто и быстро,...
Салат «Обжорка «, приготовленный с мясом — по истине мужской салат. Он накормит любого обжору и насытит организм до отвала. Этот салат...
Такое сновидение означает основу жизни. Сонник пол толкует как знак жизненной ситуации, в которой ваша основа жизни может показывать...
Во сне приснилась крепкая и зеленая виноградная лоза, да еще и с пышными гроздьями ягод? В реале вас ждет бесконечное счастье во взаимной...
Первое мясо, которое нужно давать малышу для прикорма, это – крольчатина. При этом очень важно знать, как правильно варить кролика для...