Широтная зональность и высотная поясность, их различия и связи между ними. Географические зоны


Широтная зональность и высотная поясность – географические понятия , характеризующие изменение природных условий, и, как следствие, смену природных ландшафтных зон, по мере движения от экватора к полюсам (широтная зональность), либо по мере подъёма над уровнем моря.

Широтная зональность

Известно, что климат в различных частях нашей планеты не одинаков. Наиболее заметное изменение климатических условий происходит при перемещении от экватора к полюсам: чем выше широта, тем погода становятся холоднее. Такое географическое явление именуется широтной зональностью. Связано оно с неравномерным распределением тепловой энергии Солнца по поверхности нашей планеты.

Основную роль в изменении климата играет наклон земной оси по отношению к Солнцу. Помимо того, широтная зональность связана с различной удалённостью экваториальной и полюсных частей планеты от Солнца. Впрочем, данный фактор влияет на разницу температур в различных широтах в значительно меньшей степени, нежели наклон оси. Земная ось вращения, как известно, располагается по отношению к эклиптике (плоскости движения Солнца) под некоторым углом.

Данный наклон поверхности Земли приводит к тому, что солнечные лучи под прямым углом падают на центральную, экваториальную часть планеты. Поэтому, именно экваториальный пояс получает максимум солнечной энергии. Чем ближе к полюсам, тем солнечные лучи меньше согревают земную поверхность из-за большего угла падения. Чем выше широта, тем больше угол падения лучей, и тем больше их отражается от поверхности. Они как бы скользят по земле, рикошетом уходя дальше в космическое пространство.

Следует учитывать, что наклон земной оси по отношению к Солнцу меняется в течение года. С этой особенностью связано чередование времён года: когда в южном полушарии лето, в северном полушарии – зима, и наоборот.

Но эти сезонные колебания не играют особой роли в среднегодовом температурном показателе. В любом случае, средний показатель температур в экваториальном или тропическом поясе будет положительный, а в районе полюсов – отрицательный. Широтная зональность оказывает прямое влияние на климат, ландшафт, фауну, гидрологию и так далее. При движении к полюсам смена широтных зон хорошо заметна не только на суше, но и в океане.

В географии, по мере продвижения к полюсам, выделяют следующие широтные зоны:

  • Экваториальную.
  • Тропическую.
  • Субтропическую.
  • Умеренную.
  • Субарктическую.
  • Арктическую (полярную).

Высотная поясность

Высотная поясность так же, как и широтная зональность характеризуется сменой климатических условий. Только происходит данная смена не при движении от экватора к полюсам, а от уровня моря в высокогорье. Основные различия между низинами и горными районами заключаются в разнице температур.

Так, при подъёме на километр относительно уровня моря, среднегодовая температура понижается приблизительно на 6 градусов. Помимо того, уменьшается атмосферное давление, солнечная радиация становится более интенсивной, а воздух – более разряжённым, чистым и менее насыщенным кислородом.

При достижении высоты нескольких километров (2-4 км) возрастает влажность воздуха, увеличивается количество осадков. Далее, по мере подъёма в горы, становится более заметной смена природных поясов. В некоторой степени такая смена сходна с изменением ландшафта при широтной поясности. Количество потерь солнечного тепла увеличивается по мере нарастания высоты. Причина этому – меньшая плотность воздуха, играющего роль своеобразного одеяла, задерживающего отражающиеся от земли и воды солнечные лучи.

При этом смена высотных поясов не всегда происходит в строго определённой последовательности. В различных географических зонах такая смена может происходить по-разному. В тропических или арктических областях полный цикл смены высотных поясов может не наблюдаться вовсе. Например, в горах Антарктиды или Приполярья отсутствуют лесной пояс и альпийские луга. А во многих горах, расположенных в тропиках – снежно-ледниковый (нивальный) пояс. Наиболее полно смену циклов можно наблюдать в наиболее высокогорных массивах на экваторе и в тропиках – в Гималаях, Тибете, Андах, Кордильерах.

Высотная поясность разделяется на несколько типов , начиная от самого верха к низу:

  1. Нивальный пояс. Данное название происходит от латинского «нивас» – снежный. Это самый верхний высотный пояс, характеризующийся наличием вечных снегов и ледников. В тропиках он начинается на высоте не менее 6,5 км, а в полярных зонах – непосредственно от уровня моря.
  2. Горная тундра. Располагается между поясом вечных снегов и альпийскими лугами. В данной зоне среднегодовая температура составляет 0-5 градусов. Растительность представлена мхами и лишайниками.
  3. Альпийские луга. Располагаются ниже горной тундры, климат умеренный. Растительный мир представлен стелющимися кустарниками и альпийскими травами. Используются в летнем отгонном скотоводстве для выпаса овец, коз, яков и прочих горных домашних животных.
  4. Субальпийская зона . Характеризуется смешением альпийских лугов с редкими горными лесами и кустарниками. Является переходной зоной между высокогорными лугами и лесным поясом.
  5. Горные леса. Нижний пояс гор, с преобладанием самых различных древесных ландшафтов. Деревья могут быть как лиственные, так и хвойные. В экваториально-тропической зоне подошвы гор часто покрыты вечнозелёными лесами – джунглями.

Под широтной зональностью (ландшафтной, географической) понимают закономерное изменение физико-географических процессов, компонентов и комплексов (геосистем) от экватора к полюсам.

Причина зональности – неравномерное распределение солнечной радиации по широте.

Неравномерное распределение солнечной радиации обусловливается шарообразной формой Земли и изменением угла падения солнечных лучей на земную поверхность. Наряду с этим широтное распределение солнечной энергии зависит и от ряда других факторов – расстояния от Солнца до Земли и массы Земли. По мере удаления Земли от Солнца уменьшается количество солнечной радиации, приходящее на Землю, а по мере приближения – увеличивается. Масса Земли влияет на зональность косвенно. Она удерживает атмосферу, а атмосфера способствует трансформации и перераспределению солнечной энергии. Наклон земной оси под углом 66,5° определяет неравномерное сезонное поступление солнечной радиации, что усложняет зональное распределение тепла, влаги и усиливает зональную контрастность. Отклонение движущихся масс, в том числе и воздушных, вправо – в северном и влево – в южном полушарии вносят дополнительное усложнение в зональность.

Неоднородность поверхности земного шара – наличие материков и океанов, разнообразие форм рельефа ещё в большей степени усложняют распределение солнечной энергии, а следовательно, зональности. Физические, химические, биологические процессы протекают под воздействием солнечной энергии, и отсюда следует, что они имеют зональный характер.

Механизм географической зональности очень сложен, поэтому она проявляется в различных компонентах, процессах, отдельных частях эпигеосферы далеко не однозначно.

Результаты зонального распределения лучистой энергии – зональность радиационного баланса земной поверхности.

Максимум суммарной радиации приходится не на экватор, а на пространство между 20-й и 30-й параллелями, так как атмосфера здесь более прозрачна для солнечных лучей.

Лучистая энергия в виде тепла затрачивается на испарение и теплоотдачу. Расход тепла на них довольно сложно меняется по широте. Архиважным следствием неравномерной широтной трансформации тепла являются зональность воздушных масс, циркуляция атмосферы и влагооборота. Под воздействием неравномерного нагрева, испарения влаги с подстилающей поверхности формируются зональные типы воздушных масс с различными температурами, влагосодержанием, плотностью. Зональные типы воздушных масс включают экваториальные (тёплые, влажные), тропические (тёплые, сухие), бореальные умеренных широт (прохладные и влажные), арктические и в южном полушарии антарктические (холодные и относительно сухие) воздушные массы. Неодинаковый нагрев, а следовательно, различная плотность воздушных масс (разное атмосферное давление) вызывают нарушение термодинамического равновесия в тропосфере и перемещение воздушных масс. Если бы земля не вращалась, то воздух поднимался бы в пределах приэкваториальных широт и растекался к полюсам, а от них возвращался к экватору в приземной части тропосферы. Циркуляция имела бы меридиональный характер. Однако вращение Земли вносит серьёзное отклонение от этой закономерности, и в тропосфере образуется несколько циркуляционных схем. Они соответствуют 4-м зональным типам воздушных масс. В связи с этим в каждом полушарии их получается по 4: экваториальная, общая для северного и южного полушарий (низкое давление, штили, восходящие потоки воздуха), тропическая (высокое давление, восточные ветры), умеренная (пониженное давление, западные ветры) и полярные (пониженное давление, восточные ветры). Здесь же выделяются 3 переходные зоны – субарктическая, субтропическая, субэкваториальная, в которых типы циркуляции и воздушных масс сменяются по сезонам.

Циркуляция атмосферы – движитель, механизм трансформации тепла и влаги. Она сглаживает температурные различия на земной поверхности. Распределение тепла определяет выделение следующих тепловых поясов: жаркого (среднегодовая температура выше 20°С); двух умеренных (между годовой изотермой 20°С и изотермой самого тёплого месяца 10°С); двух холодных (температура самого тёплого месяца ниже 10°С). Внутри холодных поясов, иногда, выделяют «области вечного мороза» (температура самого тёплого месяца ниже 0°С).

Зональность циркуляции атмосферы тесно связана с зональностью влагооборота и увлажнения. Количество осадков и величина испаряемости определяют условия увлажнения и влагообеспеченности ландшафтов в целом. Коэффициент увлажнения (определяется отношением Q / Исп., где Q – годовое количество осадков, а Исп.

– годовая величина испаряемости) является показателем климатического увлажнения. Границы ландшафтных зон совпадают с определёнными значениями коэффициента увлажнения: в тайге – 1,33; лесостепи – 1–0,6; степи – 0,6–0,3; полупустыне – 0,3–0,12.

Когда коэффициент увлажнения приближен к 1, условия увлажнения оптимальны, а когда коэффициент увлажнения меньше 1 – увлажнение недостаточно.

Показателем тепло- и влагообеспеченности является индекс сухости М.И. Будыко R / Lr, где R – радиационный баланс, Lr – количество тепла, необходимое для испарения годового количества осадков.

Зональность выражается не только в среднем годовом количестве тепла и влаги, но и их режиме – внутригодовых изменениях. Экваториальная зона характеризуется ровным температурным режимом, для умеренных широт характерно четыре сезона. Климатическая зональность проявляется во всех географических явлениях – в процессах стока, гидрологическом режиме.

Географическая зональность очень хорошо прослеживается в органическом мире. В силу этого обстоятельства ландшафтные зоны получили свои названия по характерным типам растительности: арктическая, тундровая, таёжная, лесостепная, степная, сухостепная, полупустынная, пустынная.

Не менее чётко выражена зональность почвенного покрова, которая предвосхитила разработку В.В. Докучаевым учения о зонах природы. В европейской части России с севера на юг наблюдается последовательное шествие почвенных зон: арктических почв, тундрово-глеевых, подзолистых почв таёжной зоны, серых лесных и чернозёмов лесостепи, чернозёмов степной зоны, каштановых почв сухой степи, бурых полупустынных и серо-бурых пустынных почв.

Зональность проявляется как в рельефе земной поверхности, так и в геологическом фундаменте ландшафта. Рельеф формируется под воздействием эндогенных факторов, имеющих азональную природу, и экзогенных, развивающихся при прямом или косвенном участии солнечной энергии, которая имеет зональный характер. Так, для арктической зоны характерны: нагорные ледниковые равнины, ледниковые потоки; для тундры – термокарстовые впадины, бугры пучения, торфяные бугры; для степи – овраги, балки, просадочные западины, а для пустыни – эоловые формы рельефа.

В строении земной коры проявляются зональные и азональные черты. Если изверженные породы имеют азональное происхождение, то осадочные формируются при непосредственном участии климата, почвообразования, стока, имеют явно выраженные черты зональности.

В мировом океане зональность наиболее хорошо прослеживается в поверхностной толще, проявляется она и в нижележащей его части, но менее контрастно. На дне океанов и морей она косвенно проявляется в характере донных отложений (илов), имеющих большей частью органическое происхождение.

Из вышеизложенного следует, что зональность – универсальная географическая закономерность, которая проявляется во всех ландшафтообразующих процессах и в размещении геосистем на земной поверхности.

Зональность является производным не только современного климата. Зональность имеет свой возраст и свою историю развития. Современная зональность складывалась в основном в кайназое. Кайназой (эра новой жизни) – пятая эра в истории земли. Она следует за мезозоем и подразделяется на два периода – третичный и четвертичный. Существенные изменения в ландшафтных зонах связаны с материковыми оледенениями. Максимальное оледенение простиралось более чем на 40 млн км2, при этом динамика оледенения определяла смещение границ отдельных зон. Ритмические смещения границ отдельных зон прослеживаются и в последнее время. На отдельных этапах эволюции таёжной зоны она простиралась до берегов Северного Ледовитого океана, зона тундры в современных границах существует лишь в последние тысячелетия.

Основной причиной смещения зон являются макроклиматические изменения. Они тесно связаны с астрономическими факторами (колебаниями солнечной активности, изменениями оси вращения Земли, изменениями приливообразующих сил).

Компоненты геосистем перестраиваются с разной скоростью. Так, Л.С. Берг отмечал, что растительность и почвы не успевают перестраиваться, поэтому на территории «новой зоны» могут долго сохраняться реликтовые почвы и растительность. Примером можно считать: подзолистые почвы на побережье Северного Ледовитого океана, серые лесные почвы со вторым гумусовым горизонтом на месте бывших сухих степей. Рельеф и геологическое строение отличается большим консерватизмом.

Ландшафтная зональность – закономерное изменение физико-географических процессов, компонентов и геосистем от экватора к полюсам.

Причина: неравномерное распределение коротковолновой солнечной радиации в следствии шарообразности Земли и наклона её орбиты. Сильнее всего зональность проявляется в изменении лимата, растительности, животного мира, почв. Менее контрастны эти изменения в грунтовых водах и литогенной основе.

Выражается в первую очередь в среднегодовом количестве тепла и влаги на разных широтах. Во-первых, это разное распределение радиационного баланса земной поверхности. Максимум – на 20 и 30 широтах, так как там облачность наименьшая в отличии от экватора. Отсюда следует неравномерное широтное распределение воздушных масс, циркуляции атмосферы и влагооборота.

Зональные типы ландшафтов – это ландшафты, сформированные в автономных условиях (плакорных, элювиальных), то есть под влиянием атмосферного увлажнения и зональных температурных условий.

Зоны стока:

    экваториальная зона обильного стока.

    Тропические зоны

    Субтропические

    Умеренные

    Субполярные

    Полярные

20. Географическая секторность и ее влияние на региональные ландшафтные структуры.

Закон секторности (иначезакон азональности , илипровинциальности , илимеридиональности ) - закономерность дифференциации растительного покрова Земли под действием следующих причин: распределением суши и моря, рельефом зелёной поверхности и составом горных пород.

Закон секторности является дополнением закона географической зональности, который рассматривает закономерности распределения растительности (ландшафтов) под воздействием распределения солнечной энергии по поверхности Земли в зависимости от поступающей солнечной радиации в зависимости от широты. Закон азональности рассматривает влияние перераспределения поступившей энергии солнца в виде изменения климатических факторов при продвижении в глубь материков (так называемое нарастание континентальности климата) или океанов, - характер и распределение осадков, число солнечных дней, среднемесячные температуры и прочее.

Секторность океанов. Выражается в распределении:

    Речного стока (распреснение океанических вод).

    Поступления взвешенных веществ, биогенов .

    Солености вод, обусловленных испарением с поверхности океанов.

и других показателей. В целом, наблюдается существенное обеднение океанических вод в глубине океанов, так называемые океанические пустыни .

На материках закон секторности выражается в:

    Циркумокеанической зональности , которая может быть нескольких видов:

а) симметричной - океаническое воздействие проявляется с одинаковой силой и протяженностью со всех сторон материка (Австралия);

б) асимметричной - где превалирует воздействие Атлантического океана (как следствие западного переноса), как на севере Евразии;

в) смешанной.

    Нарастании континентальности по мере продвижения в глубь материка.

21. Высотная поясность как фактор ландшафтной дифференциации.

Высотная поясность – часть вертикальной зональности природных процессов и явлений, относящаяся только к горам. Смена природных зон в горах от подножия к вершине.

Причина – изменение теплового баланса с высотой. Величина солнечной радиации с высотой увеличивается, но излучение земной поверхности растёт ещё быстрее, вв результате радиационный баланс падает, температура тоже падает. Градиент здесь выше, чем в широтной зональности.

С падением температуры влажность падает тоже. Наблюдается барьерный эффект: дождевые облака подходят к наветренным склонам, поднимаются, конденсируются и выпадают осадки. В результате уже сухой и невлажный воздух переваливается через гору (к подветренному склону).

Каждой равнинной зоне присущ свой тип высотной поясности. Но это только внешне и не всегда, есть безаналоговые – альпийские луга, холодные пустыни Тибета и Памира. С приближением к экватору возможное число этих типов увеличивается.

Примеры: Урал – тундра и пояс Гольцов. Гималаи – субтропический лес, хвойный лес, бореальный хвойный лес, тундра. + Возможен вечный снег.

Отличия от зон: разреженность воздуха, циркуляция атмосферы, сезонные колебания температур и давлений, геоморфологические процессы.

Под широтной (географической, ландшафтной) зональностью подразумевается закономерное изменение различных процессов, явлений, отдельных географических компонентов и их сочетаний (систем, комплексов) от экватора к полюсам. Зональность в эле­ментарной форме была известна еще ученым Древней Греции, но первые шаги в научной разработке теории мировой зональности связаны с именем А. Гумбольдта, который в начале XIX в. обосно­вал представление о климатических и фитогеографических зонах Земли. В самом конце XIX в. В. В.Докучаев возвел широтную (по его терминологии горизонтальную) зональность в ранг мирового закона.

Для существования широтной зональности достаточно двух условий - наличия потока солнечной радиации и шарообразнос­ти Земли. Теоретически поступление этого потока к земной по­верхности убывает от экватора к полюсам пропорционально ко­синусу широты (рис. 3). Однако на фактическую величину инсоля­ции, поступающей на земную поверхность, влияют и некоторые другие факторы, имеющие также астрономическую природу, в том числе расстояние от Земли до Солнца. По мере удаления от Солнца поток его лучей становится слабее, и на достаточно даль­нем расстоянии разница между полярными и экваториальными широтами теряет свое значение; так, на поверхности планеты Плутон расчетная температура близка к -230 °С. При слишком боль­шом приближении к Солнцу, напротив, во всех частях планеты оказывается слишком жарко. В обоих крайних случаях невозможно существование воды в жидкой фазе, жизни. Земля, таким обра­зом, наиболее «удачно» расположена по отношению к Солнцу.

Наклон земной оси к плоскости эклиптики (под углом около 66,5°) определяет неравномерное поступление солнечной радиа­ции по сезонам, что существенно усложняет зональное распреде-


ление тепла и обостряет зональные контрасты. Если бы земная ось была перпендикулярна плоскости эклиптики, то каждая парал­лель получала бы в течение всего года почти одинаковое количе­ство солнечного тепла и на Земле практически не было бы сезон­ной смены явлений. Суточное вращение Земли, обусловливающее отклонение движущихся тел, в том числе воздушных масс, впра­во в Северном полушарии и влево - в Южном, вносит дополни­тельные усложнения в схему зональности.

Масса Земли также влияет на характер зональности, хотя и косвенно: она позволяет планете (в отличие, например, от «лег-

171 кой» Луны) удерживать атмосферу, которая служит важным фак­тором трансформации и перераспределения солнечной энергии.

При однородном вещественном составе и отсутствии неровно­стей количество солнечной радиации изменялось бы на земной поверхности строго по широте и было бы одинаковым на одной и той же параллели, несмотря на осложняющее влияние перечис­ленных астрономических факторов. Но в сложной и неоднород­ной среде эпигеосферы поток солнечной радиации перераспреде­ляется и претерпевает разнообразные трансформации, что ведет к нарушению его математически правильной зональности.

Поскольку солнечная энергия служит практически единствен­ным источником физических, химических и биологических про­цессов, лежащих в основе функционирования географических компонентов, в этих компонентах неизбежно должна проявляться широтная зональность. Однако проявления эти далеко не одно­значны, и географический механизм зональности оказывается достаточно сложным.

Уже проходя через толщу атмосферы, солнечные лучи частич­но отражаются, а также поглощаются облаками. В силу этого мак­симальная радиация, приходящая к земной поверхности, наблю­дается не на экваторе, а в поясах обоих полушарий между 20-й и 30-й параллелями, где атмосфера наиболее прозрачна для сол­нечных лучей (рис. 3). Над сушей контрасты прозрачности атмос­феры более значительны, чем над Океаном, что находит отраже­ние в рисунке соответствующих кривых. Кривые широтного рас­пределения радиационного баланса несколько более сглажены, но хорошо заметно, что поверхность Океана характеризуется бо­лее высокими цифрами, чем суша. К важнейшим следствиям ши-ротно-зонального распределения солнечной энергии относятся зональность воздушных масс, циркуляции атмосферы и влаго­оборота. Под влиянием неравномерного нагрева, а также испаре­ния с подстилающей поверхности формируются четыре основных зональных типа воздушных масс: экваториальные (теплые и влаж­ные), тропические (теплые и сухие), бореальные, или массы уме­ренных широт (прохладные и влажные), и арктические, а в Юж­ном полушарии антарктические (холодные и относительно сухие).

Различие в плотности воздушных масс вызывает нарушения термодинамического равновесия в тропосфере и механическое пе­ремещение (циркуляцию) воздушных масс. Теоретически (без учета влияния вращения Земли вокруг оси) воздушные потоки от на­гретых приэкваториальных широт должны были подниматься вверх и растекаться к полюсам, а оттуда холодный и более тяжелый воздух возвращался бы в приземном слое к экватору. Но отклоня­ющее действие вращения планеты (сила Кориолиса) вносит в эту схему существенные поправки. В результате в тропосфере образу­ется несколько циркуляционных зон или поясов. Для экватори-

172 ального пояса характерны низкое атмосферное давление, штили, восходящие потоки воздуха, для тропических - высокое давле­ние, ветры с восточной составляющей (пассаты), для умеренных - пониженное давление, западные ветры, для полярных - пони­женное давление, ветры с восточной составляющей. Летом (для соответствующего полушария) вся система циркуляции атмосфе­ры смещается к «своему» полюсу, а зимой - к экватору. Поэтому в каждом полушарии образуются три переходных пояса - субэк­ваториальный, субтропический и субарктический (субантаркти­ческий), в которых типы воздушных масс сменяются по сезонам. Благодаря циркуляции атмосферы зональные температурные различия на земной поверхности несколько сглаживаются, одна­ко в Северном полушарии, где площадь суши значительно боль­ше, чем в Южном, максимум теплообеспеченности сдвинут к се­веру, примерно до 10 - 20° с. ш. С древнейших времен принято различать на Земле пять тепловых поясов: по два холодных и уме­ренных и один жаркий. Однако такое деление имеет чисто услов­ный характер, оно крайне схематично и географическое значение его невелико. Континуальный характер изменения температуры воздуха у земной поверхности затрудняет разграничение тепло­вых поясов. Тем не менее, используя в качестве комплексного ин­дикатора широтно-зональную смену основных типов ландшаф­тов, можно предложить следующий ряд тепловых поясов, сменя­ющих друг друга от полюсов к экватору:

1) полярные (арктический и антарктический);

2) субполярные (субарктический и субантарктический);

3) бореальные (холодно-умеренные);

4) суббореальные (тепло-умеренные);

5) пред субтропические;

6) субтропические;

7) тропические;

8) субэкваториальные;

9) экваториальный.

С зональностью циркуляции атмосферы тесно связана зональ­ность влагооборота и увлажнения. В распределении осадков по широте наблюдается своеобразная ритмичность: два максимума (главный - на экваторе и второстепенный в бореальных широ­тах) и два минимума (в тропических и полярных широтах) (рис. 4). Количество осадков, как известно, еще не определяет условий увлажнения и влагообеспеченности ландшафтов. Для этого необ­ходимо соотнести количество ежегодно выпадающих атмосфер­ных осадков с тем количеством, которое необходимо для опти­мального функционирования природного комплекса. Наилучшим интегральным показателем потребности во влаге служит величи­на испаряемости, т. е. предельного испарения, теоретически воз­можного при данных климатических (и прежде всего температур-

I I j L.D 2 ШШ 3 Шж 4 - 5

ных) условиях. Г. Н. Высоцкий впервые использовал еще в 1905 г. указанное соотношение для характеристики природных зон Евро­пейской России. Впоследствии Н. Н. Иванов независимо от Г. Н. Вы­соцкого ввел в науку показатель, получивший известность как коэффициент увлажнения Высоцкого - Иванова:

К=г/Е,

где г - годовая сумма осадков; Е - годовая величина испаряемости 1 .

1 Для сравнительной характеристики атмосферного увлажнения используется также индекс сухости RfLr, предложенный М.И.Будыко и А. А. Григорьевым: где R - годовой радиационный баланс; L - скрытая теплота испарения; г - годо­вая сумма осадков. По своему физическому смыслу этот индекс близок к показа­телю, обратному К Высоцкого-Иванова. Однако его применение дает менее точные результаты.

На рис. 4 видно, что широтные изменения осадков и испаряе­мости не совпадают и в значительной степени имеют даже проти­воположный характер. В результате на широтной кривой К в каж­дом полушарии (для суши) выделяются две критические точки, где К переходит через 1. Величина К- 1 соответствует оптимуму атмосферного увлажнения; при К> 1 увлажнение становится из­быточным, а при К< 1 - недостаточным. Таким образом, на по­верхности суши в самом общем виде можно выделить экватори­альный пояс избыточного увлажнения, два симметрично распо­ложенных по обе стороны от экватора пояса недостаточного ув­лажнения в низких и средних широтах и два пояса избыточного увлажнения в высоких широтах (см. рис. 4). Разумеется, это сильно генерализованная, осредненная картина, не отражающая, как мы увидим в дальнейшем, постепенных переходов между поясами и существенных долготных различий внутри них.

Интенсивность многих физико-географических процессов за­висит от соотношения теготообеспеченности и увлажнения. Одна­ко нетрудно заметить, что широтно-зональные изменения тем­пературных условий и увлажнения имеют разную направлен­ность. Если запасы солнечного тепла в общем нарастают от по­люсов к экватору (хотя максимум несколько смещен в тропиче­ские широты), то кривая увлажнения имеет резко выраженный волнообразный характер. Не касаясь пока способов количествен­ной оценки соотношения теплообеспеченности и увлажнения, наметим самые общие закономерности изменения этого соотно­шения по широте. От полюсов примерно до 50-й параллели уве­личение теплообеспеченности происходит в условиях постоянно­го избытка влаги. Далее с приближением к экватору увеличение запасов тепла сопровождается прогрессирующим усилением су­хости, что приводит к частой смене ландшафтных зон, наиболь­шему разнообразию и контрастности ландшафтов. И лишь в от­носительно неширокой полосе по обе стороны от экватора на­блюдается сочетание больших запасов тепла с обильным увлаж­нением.

Для оценки влияния климата на зональность других компонен­тов ландшафта и природного комплекса в целом важно учитывать не только средние годовые величины показателей тепло- и влаго-обеспеченности, но и их режим, т.е. внутригодовые изменения. Так, для умеренных широт характерна сезонная контрастность термических условий при относительно равномерном внутриго-довом распределении осадков; в субэкваториальном поясе при небольших сезонных различиях в температурных условиях резко выражен контраст между сухим и влажным сезонами и т.д.

Климатическая зональность находит отражение во всех других географических явлениях - в процессах стока и гидрологическом режиме, в процессах заболачивания и формирования грунтовых

175 вод, образования коры выветривания и почв, в миграции хими­ческих элементов, а также в органическом мире. Зональность от­четливо проявляется и в поверхностной толще Мирового океана. Особенно яркое, в известной степени интегральное выражение географическая зональность находит в растительном покрове и почвах.

Отдельно следует сказать о зональности рельефа и геологиче­ского фундамента ландшафта. В литературе можно встретить вы­сказывания, будто эти компоненты не подчиняются закону зо­нальности, т.е. азональны. Прежде всего надо заметить, что де­лить географические компоненты на зональные и азональные не­правомерно, ибо в каждом из них, как мы увидим, проявляются влияния как зональных, так и азональных закономерностей. Рель­еф земной поверхности формируется под воздействием так назы­ваемых эндогенных и экзогенных факторов. К первым относятся тектонические движения и вулканизм, имеющие азональную при­роду и создающие морфоструктурные черты рельефа. Экзогенные факторы связаны с прямым или косвенным участием солнечной энергии и атмосферной влаги и создаваемые ими скульптурные формы рельефа распределяются на Земле зонально. Достаточно напомнить о специфических формах ледникового рельефа Аркти­ки и Антарктики, термокарстовых впадинах и буграх пучения Субарктики, оврагах, балках и просадочных западинах степной зоны, эоловых формах и бессточных солончаковых впадинах пус­тыни и т.д. В лесных ландшафтах мощный растительный покров сдерживает развитие эрозии и обусловливает преобладание «мяг­кого» слаборасчлененного рельефа. Интенсивность экзогенных гео­морфологических процессов, например, эрозии, дефляции, кар-стообразования, существенно зависит от широтно-зональных ус­ловий.

В строении земной коры также сочетаются азональные и зо­нальные черты. Если изверженные породы имеют безусловно азо­нальное происхождение, то осадочная толща формируется под непосредственным влиянием климата, жизнедеятельности орга­низмов, почвообразования и не может не носить на себе печати зональности.

На всем протяжении геологической истории осадкообразова­ние (литогенез) неодинаково протекало в разных зонах. В Аркти­ке и Антарктике, например, накапливался несортированный об­ломочный материал (морена), в тайге - торф, в пустынях - об­ломочные породы и соли. Для каждой конкретной геологической эпохи можно восстановить картину зон того времени, и каждой зоне будут присущи свои типы осадочных пород. Однако на про­тяжении геологической истории система ландшафтных зон пре­терпевала неоднократные изменения. Таким образом, на совре­менную геологическую карту наложились результаты литогенеза

176 всех геологических периодов, когда зоны были совсем не такие, как сейчас. Отсюда внешняя пестрота этой карты и отсутствие видимых географических закономерностей.

Из сказанного следует, что зональность нельзя рассматривать как некий простой отпечаток современного климата в земном пространстве. По существу, ландшафтные зоны - это простран­ственно-временные образования, они имеют свой возраст, свою историю и изменчивы как во времени, так и в пространстве. Со­временная ландшафтная структура эпигеосферы складывалась в основном в кайнозое. Наибольшей древностью отличается эквато­риальная зона, по мере удаления к полюсам зональность испыты­вает все большую изменчивость, и возраст современных зон умень­шается.

Последняя существенная перестройка мировой системы зональ­ности, захватившая в основном высокие и умеренные широты, связана с материковыми оледенениями четвертичного периода. Колебательные смещения зон продолжаются здесь и в послелед­никовое время. В частности, за последние тысячелетия был по крайней мере один период, когда таежная зона местами продви­нулась до северной окраины Евразии. Зона тундры в современных границах возникла лишь вслед за последующим отступанием тай­ги к югу. Причины подобных изменений положения зон связаны с ритмами космического происхождения.

Действие закона зональности наиболее полно сказывается в сравнительно тонком контактном слое эпигеосферы, т.е. в соб­ственно ландшафтной сфере. По мере удаления от поверхности суши и океана к внешним границам эпигеосферы влияние зо­нальности ослабевает, но не исчезает окончательно. Косвенные проявления зональности наблюдаются на больших глубинах в ли­тосфере, практически во всей стратисфере, т. е. толще осадочных пород, о связи которых с зональностью уже говорилось. Зональ­ные различия в свойствах артезианских вод, их температуре, ми­нерализации, химическом составе прослеживаются до глубины 1000 м и более; горизонт пресных подземных вод в зонах избыточ­ного и достаточного увлажнения может достигать мощности 200- 300 и даже 500 м, тогда как в аридных зонах мощность этого гори­зонта незначительна или он вовсе отсутствует. На океаническом ложе зональность косвенно проявляется в характере донных илов, имеющих преимущественно органическое происхождение. Мож­но считать, что закон зональности распространяется на всю тро­посферу, поскольку ее важнейшие свойства формируются под воздействием субаэральной поверхности континентов и Мирово­го океана.

В отечественной географии долгое время недооценивалось зна­чение закона зональности для жизни человека и общественного производства. Суждения В.В.Докучаева на эту тему расценива-

177 лись как преувеличение и проявление географического детерми­низма. Территориальной дифференциации народонаселения и хо­зяйства присущи свои закономерности, которые не могут быть полностью сведены к действию природных факторов. Однако от­рицать влияние последних на процессы, происходящие в челове­ческом обществе, было бы грубой методологической ошибкой, чреватой серьезными социально-экономическими последствиями, в чем нас убеждает весь исторический опыт и современная дей­ствительность.

Различные аспекты проявления закона широтной зональности в сфере социально-экономических явлений подробнее рассмат­риваются в гл. 4.

Закон зональности находит свое наиболее полное, комплекс­ное выражение в зональной ландшафтной структуре Земли, т.е. в существовании системы ландшафтных зон. Систему ландшафтньгх зон не следует представлять себе в виде серии геометрически пра­вильных сплошных полос. Еще В. В.Докучаев не мыслил себе зоны как идеальной формы пояса, строго разграниченные по паралле­лям. Он подчеркивал, что природа - не математика, и зональ­ность - это лишь схема или закон. По мере дальнейшего исследо­вания ландшафтных зон обнаружилось, что некоторые из них ра­зорваны, одни зоны (например, зона широколиственных лесов) развиты только в периферических частях материков, другие (пус­тыни, степи), напротив, тяготеют к внутриконтинентальным рай­онам; границы зон в большей или меньшей мере отклоняются от параллелей и местами приобретают направление, близкое к ме­ридиональному; в горах широтные зоны как будто исчезают и за­мещаются высотными поясами. Подобные факты дали повод в 30-е гг. XX в. некоторым географам утверждать, будто широтная зональность - это вовсе не всеобщий закон, а лишь частный слу­чай, характерный для больших равнин, и что ее научное и прак­тическое значение преувеличено.

В действительности же различного рода нарушения зональнос­ти не опровергают ее универсального значения, а лишь говорят о том, что она проявляется неодинаково в различных условиях. Вся­кий природный закон по-разному действует в различных услови­ях. Это касается и таких простейших физических констант, как точка замерзания воды или величина ускорения силы тяжести: они не нарушаются только в условиях лабораторного экспери­мента. В эпигеосфере одновременно действует множество природ­ных законов. Факты, на первый взгляд не укладывающиеся в тео­ретическую модель зональности с ее строго широтными сплош­ными зонами, свидетельствуют о том, что зональность - не един­ственная географическая закономерность и только ею невозмож­но объяснить всю сложную природу территориальной физико-гео­графической дифференциации.

178 максимумы давления. В умеренных широтах Евразии различия в средних январских температурах воздуха на западной периферии материка и в его внутренней крайне континентальной части пре­вышают 40 °С. Летом в глубине материков теплее, чем на перифе­рии, но различия не столь велики. Обобщенное представление о степени океанического влияния на температурный режим мате­риков дают показатели континентальности климата. Существуют различные способы расчета таких показателей, основанные на учете годовой амплитуды средних месячных температур. Наиболее удач­ный показатель, учитывающий не только годовую амплитуду тем­ператур воздуха, но и суточную, а также недостаток относитель­ной влажности в самый сухой месяц и широту пункта, предло­жил Н.Н.Иванов в 1959 г. Приняв среднее планетарное значение показателя за 100%, ученый разбил весь ряд величин, получен­ных им для разных пунктов земного шара, на десять поясов кон­тинентальности (в скобках цифры даны в процентах):

1) крайне океанический (менее 48);

2) океанический (48 - 56);

3) умеренно-океанический (57 - 68);

4) морской (69 - 82);

5) слабо-морской (83-100);

6) слабо-континентальный (100-121);

7) умеренно континентальный (122-146);

8) континентальный (147-177);

9) резко континентальный (178 - 214);

10) крайне континентальный (более 214).

На схеме обобщенного континента (рис. 5) пояса континен­тальности климата располагаются в виде концентрических полос неправильной формы вокруг крайне континентальных ядер в каж­дом полушарии. Нетрудно заметить, что почти на всех широтах континентальностъ изменяется в широких пределах.

Около 36 % атмосферных осадков, выпадающих на поверхность суши, имеют океаническое происхождение. По мере продвиже­ния в глубь суши морские воздушные массы теряют влагу, остав­ляя большую часть ее на периферии материков, в особенности на обращенных к Океану склонах горных хребтов. Наибольшая долготная контрастность в количестве осадков наблюдается в тро­пических и субтропических широтах: обильные муссонные дож­ди на восточной периферии материков и крайняя аридность в центральных, а отчасти и в западных областях, подверженных воздействию континентального пассата. Этот контраст усугубля­ется тем, что в том же направлении резко возрастает испаряе­мость. В результате на притихоокеанской периферии тропиков Евразии коэффициент увлажнения достигает 2,0 - 3,0, тогда как на большей части пространства тропического пояса он не превы­шает 0,05,


Ландшафтно-географические следствия континентально-океа-нической циркуляции воздушных масс чрезвычайно многообраз­ны. Кроме тепла и влаги из Океана с воздушными потоками по­ступают различные соли; этот процесс, названный Г.Н.Высоц­ким импульверизацией, служит важнейшей причиной засоления многих аридных областей. Уже давно было замечено, что по мере удаления от океанических побережий в глубь материков происхо­дит закономерная смена растительных сообществ, животного на­селения, почвенных типов. В 1921 г. В. Л. Комаров назвал эту зако­номерность меридиональной зональностью; он считал, что на каж­дом материке следует выделять по три меридиональные зоны: одну внутриматериковую и две приокеанические. В 1946 г. эту идею кон­кретизировал ленинградский географ А. И.Яунпутнинь. В своем

181 физико-географическом районировании Земли он разделил все материки на три долготных сектора - западный, восточный и центральный и впервые отметил, что каждый сектор отличается свойственным ему набором широтных зон. Впрочем, предшествен­ником А. И.Яунпутниня следует считать английского географа А.Дж. Гербертсона, который еще в 1905 г. разделил сушу на при­родные пояса и в каждом из них выделил по три долготных отрез­ка - западный, восточный и центральный.

При последующем, более глубоком изучении закономернос­ти, которую стало принятым называть долготной секторностью, или просто секторностью, оказалось, что трехчленное секторное деление всей суши слишком схематично и не отражает всей слож­ности этого явления. Секторная структура материков имеет ясно выраженный асимметричный характер и неодинакова в разных широтных поясах. Так, в тропических широтах, как уже было от­мечено, четко намечается двучленная структура, в которой доми­нирует континентальный сектор, а западный редуцирован. В по­лярных широтах секторные физико-географические различия про­являются слабо вследствие господства довольно однородных воз­душных масс, низких температур и избыточного увлажнения. В бо-реальном поясе Евразии, где суша имеет наибольшее (почти на 200°) протяжение по долготе, напротив, не только хорошо выра­жены все три сектора, но и возникает необходимость установить дополнительные, переходные ступени между ними.

Первую детальную схему секторного деления суши, реализо­ванную на картах «Физико-географического атласа мира» (1964), разработала Е. Н. Лукашова. В этой схеме шесть физико-географи­ческих (ландшафтных) секторов. Использование в качестве кри­териев секторной дифференциации количественных показателей - коэффициентов увлажнения и континентальное™, а в качестве комплексного индикатора - границ распространения зональных типов ландшафтов позволило детализировать и уточнить схему Е. Н.Лукашовой.

Здесь подойдем к существенному вопросу о соотношениях между зональностью и секторностью. Но предварительно необходимо обратить внимание на определенную двойственность в употреб­лении терминов зона и сектор. В широком смысле, эти термины используются как собирательные, по существу типологические понятия. Так, говоря «зона пустынь» или «зона степей» (в един­ственном числе), часто имеют в виду всю совокупность терри­ториально разобщенных площадей с однотипными зональными ландшафтами, которые разбросаны в разных полушариях, на разных материках и в различных секторах последних. Таким об­разом, в подобных случаях зона не мыслится как единый цело­стный территориальный блок, или регион, т.е. не может рассмат­риваться как объект районирования. Но вместе с тем те же тер-

182 мины могут относиться к конкретным, целостным территориаль­но обособленным выделам, отвечающим представлению о реги­оне, например Зона пустынь Центральной Азии, Зона степей Западной Сибири. В этом случае имеют дело с объектами (таксо­нами) районирования. Точно так же мы вправе говорить, напри­мер, о «западном приокеаническом секторе» в самом широком смысле слова как о глобальном феномене, объединяющем ряд конкретных территориальных участков на различных континен­тах - в приатлантической части Западной Европы и приатлан-тической части Сахары, вдоль тихоокеанских склонов Скалистых гор и т.д. Каждый подобный участок суши представляет собой самостоятельный регион, но все они являются аналогами и также именуются секторами, однако понимаемыми в более узком смыс­ле слова.

Зону и сектор в широком смысле слова, имеющем явно типо­логический оттенок, следует трактовать как имя нарицательное и соответственно писать их названия со строчной буквы, тогда как те же термины в узком (т. е. региональном) смысле и входящие в состав собственного географического названия, - с прописной. Возможны варианты, например: Западно-Европейский приатлан-тический сектор вместо Приатлантический сектор Западной Ев­ропы; Евроазиатская степная зона вместо Степная зона Евразии (или Зона степей Евразии).

Между зональностью и секторностью существуют сложные со­отношения. Секторная дифференциация в значительной степени определяет специфические проявления закона зональности. Дол­готные секторы (в широком понимании), как правило, вытянуты вкрест простирания широтных зон. При переходе из одного секто­ра в другой каждая ландшафтная зона претерпевает более или менее существенную трансформацию, а для некоторых зон границы сек­торов оказываются и вовсе непреодолимыми барьерами, так что их распространение ограничено строго определенными сектора­ми. Например, средиземноморская зона приурочена к западному приокеаническому сектору, а субтропическая влажнолесная - к восточному приокеаническому (табл. 2 и рис. б) 1 . Причины таких кажущихся аномалий следует искать в зонально-секторных зако-

1 На рис. 6 (как и на рис. 5) все континенты собраны воедино в строгом соответствии с распределением суши по широте, с соблюдением линейного масштаба по всем параллелям и осевому меридиану, т. е. в равновеликой проек­ции Сансона. Тем самым передается действительное соотношение всех контуров по площадям. Аналогичная, широко известная и вошедшая в учебники схема Е. Н.Лукашовой и А. М. Рябчикова построена без соблюдения масштаба и пото­му искажает пропорции между широтной и долготной протяженностью услов­ного массива суши и площадные соотношения между отдельными контурами. Существо предлагаемой модели точнее выражается термином обобщенный кон­тинент вместо часто употребляемого идеальный континент.

Размещение ландшафтных
Пояс Зона
Полярный 1 . Ледяная и полярнопустынная
Субполярный 2. Тундровая 3. Лесотундровая 4. Лесолуговая
Бореальный 5. Таежная 6. Подтаежная
Суббореальный 7. Широколиственно-лесная 8. Лесостепная 9. Степная 10. Полупустынная 11. Пустынная
Предсубтропический 12. Лесная пред субтропическая 13. Лесостепная и ариднолесная 14. Степная 15. Полупустынная 16. Пустынная
Субтропический 17. Влажнолесная (вечнозеленая) 18. Средиземноморская 19. Лесостепная и лесосаванновая 20. Степная 21. Полупустынная 22. Пустынная
Тропический и субэкваториаль­ный 23. Пустынная 24. Опустыненно-саванновая 25. Типично саванновая 26. Лесосаванновая и редколесная 27. Лесная экспозиционная и переменновлажная

номерностях распределения солнечной энергии и в особенности атмосферного увлажнения.

Основными критериями для диагностики ландшафтных зон служат объективные показатели теплообеспеченности и увлажне­ния. Экспериментальным путем установлено, что среди множе­ства возможных показателей для нашей цели наиболее приемле-

Сектор
Западный приокеа-нический Умеренно континен­тальный Типично континен­тальный Резко и крайне континен­тальный Восточный переходный Восточный приокеа-нический
+ + + + + +
* + + + +
+ + + + + +
\
+ + \ *
+ + +
+ + - + +

ряды ландшафтных зон-аналогов по теплообеспеченности". I - полярные; II - суб­полярные; III - бореальные; IV - суббореальные; V - предсубтропические; VI - субтропические; VII - тропические и субэкваториальные; VIII - эквато­риальные; ряды ландшафтных зон-аналогов по увлажнению: А - экстрааридные; Б - аридные; В - семиаридные; Г - семигумидные; Д - гумидные; 1 - 28 - ландшафтные зоны (пояснения в табл. 2); Т - сумма температур за период со средними суточными температурами воздуха выше 10 °С; К - коэффициент ув­лажнения. Шкалы - логарифмические

тить, что каждый такой ряд зон-аналогов укладывается в опреде­ленный интервал величин принятого показателя теплообеспечен­ности. Так, зоны суббореального ряда лежат в интервале суммы температур 2200-4000 "С, субтропического - 5000 - 8000 "С. В рам­ках принятой шкалы менее четкие термические различия наблю­даются между зонами тропического, субэкваториального и эква­ториального поясов, но это вполне закономерно, поскольку в данном случае определяющим фактором зональной дифференци­ации выступает не теплообеспеченность, а увлажнение 1 .

Если ряды зон-аналогов по теплообеспеченности в целом со­впадают с широтными поясами, то ряды увлажнения имеют бо­лее сложную природу, заключая в себе две составляющих - зо­нальную и секторную, и в их территориальной смене отсутствует однонаправленность. Различия в атмосферном увлажнении обус-

1 В силу указанного обстоятельства, а также вследствие недостатка надежных данных в табл. 2 и на рис. 7 и 8 тропический и субэкваториальный пояса объеди­нены и относящиеся к ним зоны-аналоги не разграничены.

187 ловлены как зональными факторами при переходе от одного ши­ротного пояса к другому, так и секторными, т. е. долготной адвек­цией влаги. Поэтому формирование зон-аналогов по увлажнению в одних случаях связано преимущественно с зональностью (в час­тности, таежной и экваториальной лесной в гумидном ряду), в других - секторностью (например, субтропической влажнолес-ной в том же ряду), а в третьих - совпадающим эффектом обеих закономерностей. К последнему случаю можно отнести зоны суб­экваториальных переменновлажных лесов и лесосаванн.

Поверхность нашей планеты неоднородна и условно разделяется на несколько поясов, которые также называются широтными зонами. Они закономерно сменяют друг друга от экватора до полюсов. Что такое широтная зональность? Отчего она зависит и как проявляется? Обо всем этом мы и поговорим.

Что такое широтная зональность?

В тех или иных уголках нашей планеты природные комплексы и компоненты различаются. Они распределены неравномерно, и может показаться, что хаотично. Однако у них есть определенные закономерности, и поверхность Земли они разделяют на так называемые зоны.

Что такое широтная зональность? Это распределение природных компонентов и физико-географических процессов поясами параллельно линии экватора. Она проявляется отличиями в среднегодовом количестве тепла и осадков, смене сезонов, растительном и почвенном покрове, а также представителями животного мира.

В каждом полушарии зоны сменяют друг друга от экватора к полюсам. На местности, где присутствуют горы, это правило меняется. Здесь природные условия и ландшафты сменяются сверху вниз, относительно абсолютной высоты.

И широтная, и высотная зональность не всегда выражены одинаково. Иногда они более заметны, иногда - менее. Особенности вертикальной смены зон во многом зависит от удаленности гор от океана, расположение склонов по отношению к проходящим воздушным потокам. Наиболее ярко высотная поясность выражена в Андах и Гималаях. Что такое широтная зональность, лучше всего видно в равнинных регионах.

Отчего зависит зональность?

Основная причина всех климатических и природных особенностей нашей планеты - это Солнце и положение Земли относительно него. Из-за того, что планета имеет шарообразную форму, солнечное тепло распределяется по ней неравномерно, нагревая одни участки больше, другие - меньше. Это, в свою очередь, способствует неодинаковому прогреванию воздуха, отчего и возникают ветры, которые тоже участвуют в формировании климата.

На природные особенности отдельных участков Земли также влияет развитие на местности речной системы и ее режим, расстояние от океана, уровень солености его вод, морские течения, характер рельефа и другие факторы.

Проявление на материках

На суше широтная зональность заметна более отчетливо, чем в океане. Она проявляется в виде природных зон и климатических поясов. В Северном и Южном полушариях выделяют такие пояса: экваториальный, субэкваториальный, тропический, субтропический, умеренный, субарктический, арктический. Каждому из них соответствуют свои природные зоны (пустынь, полупустынь, арктических пустынь, тундра, тайга, вечнозеленый лес и т.д.), которых гораздо больше.

На каких материках ярко выражена широтная зональность? Лучше всего она наблюдается в Африке. Достаточно хорошо прослеживается на равнинах Северной Америки и Евразии (Русская равнина). В Африке широтная зональность отчетливо заметна благодаря небольшому количеству высоких гор. Они не создают природного барьера для воздушных масс, поэтому климатические пояса сменяют друг друга без нарушения закономерности.

Линия экватора пересекает африканский материк посередине, поэтому его природные зоны распределены практически симметрично. Так, влажные экваториальные леса переходят в саванны и редколесья субэкваториального пояса. Далее следуют тропические пустыни и полупустыни, которые сменяются субтропическими лесами и кустарниками.

Интересно зональность проявляется на территории Северной Америки. На севере она стандартно распределяется по широте и выражена тундрой арктического и тайгой субарктического поясов. А вот ниже Великих озер зоны распределяются параллельно меридианам. Высокие Кордильеры на западе преграждают путь ветрам с Тихого океана. Поэтому природные условия сменяются с запада на восток.

Зональность в океане

Смена природных зон и поясов существует и в водах Мирового океана. Она видна на глубине до 2000 метров, но очень отчетливо прослеживается на глубине до 100-150 метров. Проявляется она в различной составляющей органического мира, солености воды, а также ее химическом составе, в разнице температур.

Пояса Мирового океана практически такие же, как и на суше. Только вместо арктического и субарктического есть субполярный и полярный, так как океан доходит прямо до Северного полюса. В нижних слоях океана границы между поясами стабильны, а в верхних они могут смещаться в зависимости от сезона.

Выбор редакции
Добрый день, друзья! Малосольные огурцы - хит огуречного сезона. Большую популярность быстрый малосольный рецепт в пакете завоевал за...

В Россию паштет пришел из Германии. В немецком языке это слово имеет значение «пирожок». И первоначально это был мясной фарш,...

Простое песочное тесто, кисло-сладкие сезонные фрукты и/или ягоды, шоколадный крем-ганаш — совершенно ничего сложного, а в результате...

Как приготовить филе минтая в фольге - вот что необходимо знать каждой хорошей хозяйке. Во-первых, экономно, во-вторых, просто и быстро,...
Салат «Обжорка «, приготовленный с мясом — по истине мужской салат. Он накормит любого обжору и насытит организм до отвала. Этот салат...
Такое сновидение означает основу жизни. Сонник пол толкует как знак жизненной ситуации, в которой ваша основа жизни может показывать...
Во сне приснилась крепкая и зеленая виноградная лоза, да еще и с пышными гроздьями ягод? В реале вас ждет бесконечное счастье во взаимной...
Первое мясо, которое нужно давать малышу для прикорма, это – крольчатина. При этом очень важно знать, как правильно варить кролика для...
Ступеньки… Сколько десятков за день нам приходится их преодолевать?! Движение – это жизнь, и мы не замечаем, как пешим ходом наматываем...