Микроскоп. Принцип работы микроскопа построение изображения. Микроскоп и микроскопические методы исследования


Микроскоп (от греч. mikros - малый и skopeo - смотрю) - оптический прибор для получения увеличенного изображения мелких объектов и их деталей, невидимых невооруженным глазом.

Первый из известных микроскопов был создан в 1590 году в Нидерландах потомственными оптиками Захарием и Хансом Янсенами , смонтировавшими две выпуклые линзы внутри одной трубки. Позднее Декарт в своей книге "Диоптрика" (1637) описал более сложный микроскоп, составленный из двух линз - плоско-вогнутой (окуляр) и двояковыпуклой (объектив). Дальнейшее же совершенствование оптики позволило Антони ван Левенгуку в 1674 г. изготовить линзы с увеличением, достаточным для проведения простых научных наблюдений и впервые в 1683 году описать микроорганизмы.

Современный микроскоп (рисунок 1) состоит из трех основных частей: оптической, осветительной и механической.

Основными деталями оптической части микроскопа являются две системы увеличительных линз: обращенный к глазу исследователя окуляр и обращенный к препарату объектив. Окуляры имеют две линзы, верхняя из которых называется главной, а нижняя собирательной. На оправе окуляров обозначают производимое ими увеличение (×5, ×7, ×10, ×15). Количество окуляров у микроскопа может быть различным, в связи с чем различат монокулярные и бинокулярные микроскопы (предназначены для наблюдения за объектом одним или двумя глазами), а также тринокуляры , позволяющие подключать к микроскопу системы документирования (фото- и видеокамеры).

Объективы представляют собой систему линз, заключенных в металлическую оправу, из которых передняя (фронтальная) линза производит увеличение, а лежащие за ней коррекционные линзы устраняют недостатки оптического изображения. На оправе объективов цифрами также указано производимое ими увеличение (×8, ×10, ×40, ×100). Большинство моделей, предназначенных для микробиологических исследований, имеют в комплекте несколько объективов с разными степенями увеличения и поворотный механизм, предназначенный для их быстрой смены - турель , часто называемый «револьверной головкой ».

Осветительная часть предназначена для создания светового потока, который позволяет осветить объект таким образом, чтобы оптическая часть микроскопа предельно точно выполняла свои функции. Осветительная часть в прямых микроскопа проходящего света расположена за объектом под объективом и включает в себя источник света (лампу и электрический блок питания) и оптико-механическую систему (конденсор, полевую и апертурную регулируемую диафрагмы). Конденсор состоит из системы линз, которые предназначены для собирания идущих от источника света лучей в одной точке - фокусе , которая должна находиться в плоскости рассматриваемого объекта. В свою очередь диафрагма расположена под конденсором и предназначена для регулирования (увеличения или уменьшения) потока лучей, проходящих от источника света.

Механическая часть микроскопа содержит детали, объединяющие описанные выше оптическую и осветительную части, а также позволяющие размещать и перемещать исследуемый препарат. Соответственно, механическая часть состоит из основания микроскопа и держателя , к верхней части которого прикрепляются тубус - полая трубка, предназначенная для размещения объектива, а также упомянутая выше револьверная головка. Ниже находится предметный столик , на который устанавливаются предметные стекла с исследуемыми образцами. Предметный столик может перемещаться в горизонтальной плоскости с использованием соответствующего устройства, а также вверх и вниз, что обеспечивает настройку резкости изображения с помощью грубого (макрометрического) и точного (микрометрического) винтов.

Увеличение, которое дает микроскоп, определяется произведением увеличения объектива на увеличение окуляра. Кроме светопольной микроскопии широкое применение в специальных методах исследования плучили: темнопольная, фазово-контрастная, люминесцентная (флюоресцентная) и электронная микроскопия.

Первичная (собственная) флюоресценция возникает без специальной обработки препаратов и присуща ряду биологически активных веществ, таких, как ароматические аминокислоты, порфирины, хлорофилл, витамины А, В2, В1 , некоторые антибиотики (тетрациклин) и химиотерапевтические вещества (акрихин, риванол). Вторичная (наведенная) флюоресценция возникает в результате обработки микроскопируемых объектов флюоресцирующими красителями - флюорохромами. Некоторые из этих красителей диффузно распределяются в клетках, другие избирательно связываются с определёнными структурами клеток или даже с определёнными химическими веществами.

Для проведения данного вида микроскопии используются специальные люминесцентные (флюоресцентные) микроскопы , отличающиеся от обычного светового микроскопа наличием мощного источника освещения (ртутно-кварцевая лампа сверхвысокого давления или галогеновая кварцевая лампа накаливания), излучающего преимущественно в длинноволновой ультрафиолетовой или коротковолновой (сине-фиолетовой) области видимого спектра.

Данный источник используется для возбуждения флюоресценции, прежде, чем испускаемый им свет проходит через специальный возбуждающий (сине-фиолетовый) светофильтр и отражается интерференционной светоделительной пластинкой , почти полностью отсекающими более длинноволновое излучение и пропускающими только ту часть спектра, которая возбуждает флюоресценцию. При этом в современных моделях люминесцентных микроскопов возбуждающее излучение попадает на препарат через объектив (!) После же возбуждения флюоресценции возникающий свет вновь попадает в объектив, после чего проходит через расположенный перед окуляром запирающий (желтый) светофильтр , отсекающий коротковолновое возбуждающее излучение и пропускающий свет люминесценции от препарата к глазу наблюдателя.

В силу использования подобной системы светофильтров интенсивность свечения наблюдаемого объекта обычно невелика, в связи с чем люминесцентную микроскопию следует проводить в специальных затемненных помещениях .

Важным требованием при выполнении данного вида микроскопии является также применение нефлюоресцирующих иммерсионных и заключающих сред . В частности, для гашения собственной флюоресценции кедрового или иного иммерсионного масла к нему добавляют небольшие количества нитробензола (от 2 до 10 капель на 1 г). В свою очередь в качестве заключающих сред для препаратов могут быть использованы буферный раствор глицерина, а также нефлюоресцирующие полимеры (полистирол, поливиниловый спирт). В остальном при проведении люминесцентной микроскопии применяют обычные предметные и покровные стёкла, пропускающие излучение в используемой части спектра и не обладающие собственной люминесценцией.

Соответственно, важными преимуществами люминесцентной микроскопии являются:

1) цветное изображение;

2) высокая степень контрастности самосветящихся объектов на черном фоне;

3) возможность исследования клеточных структур, избирательно поглощающих различные флуорохромы, являющиеся при этом специфическими цитохимическими индикаторами;

4) возможность определения функционально-морфологических изменений клеток в динамике их развития;

5) возможность специфического окрашивания микроорганизмов (с использованием иммунофлюоресценции).

Электронная микроскопия

Теоретические основы использования электронов для наблюдения микроскопических объектов были заложены У. Гамильтоном , установившим аналогию между прохождением световых лучей в оптически неоднородных средах и траекториями частиц в силовых полях, а также де Бройлем , выдвинувшим гипотезу о существовании у электрона одновременно корпускулярных и волновых свойств.

При этом, благодаря чрезвычайно малой длине волны электронов, которая уменьшается в прямой зависимости от подаваемого ускоряющего напряжения, теоретически рассчитанный предел разрешения , характеризующий способность прибора отобразить раздельно мелкие, максимально близко расположенные детали объекта, у электронного микроскопа составляет 2-3 Å (Ангстрем , где 1Å=10 -10 м), что в несколько тысяч раз выше, чем у оптического микроскопа. Первое изображение объекта, сформированное пучками электронов, было получено в 1931г. немецкими учеными М. Кноллем и Э. Руска .

В конструкциях современных электронных микроскопов источником электронов служит металл (обычно вольфрам), из которого после его нагревания до 2500 ºС в результате термоэлектронной эмиссии испускаются электроны. С помощью электрических и магнитных полей формирующийся поток электронов можно ускорять и замедлять, а также отклонять в любых направлениях и фокусировать. Таким образом, роль линз в электронном микроскопе играет совокупность соответствующим образом рассчитанных магнитных, электростатических и комбинированных устройств, называемых «электронными линзами» .

Необходимым условием перемещения электронов в виде пучка на большое расстояние является также создание на их пути вакуума , поскольку в этом случае средняя длина свободного пробега электронов между столкновениями с газовыми молекулами будет значительно превышать расстояние, на которое они должны перемещаться. Для этих целей достаточно поддерживать в рабочей камере отрицательное давление приблизительно 10 -4 Па.

По характеру исследования объектов электронные микроскопы разделяют на просвечивающие, отражательные, эмиссионные, растровые, теневые и зеркальные , среди которых первые два являются наиболее часто используемыми.

Оптическая схема просвечивающего (трансмиссионного) электронного микроскопа полностью эквивалентна соответствующей схеме оптического микроскопа, в котором световой луч заменяется электронным лучом, а системы стеклянных линз заменяются системами электронных линз. Соответственно, просвечивающий электронный микроскоп состоит из следующих основных узлов: осветительной системы, камеры объекта, фокусирующей системы и блока регистрации конечного изображения , состоящего из фотокамеры и флуоресцирующего экрана.

Все эти узлы соединены друг с другом, образуя так называемую «колонну микроскопа», внутри которой поддерживается вакуум. Другим важным требованием, предъявляемым к исследуемому объекту, является его толщина менее чем 0,1 мкм. Окончательное же изображение объекта формируется после соответствующей фокусировки прошедшего сквозь него пучка электронов на фотопленке или флюоресцирующем экране , покрытом специальным веществом - люминофором (аналогичен экрану в кинескопах телевизоров) и превращающем электронное изображение в видимое.

При этом образование изображения в просвечивающем электронном микроскопе связано главным образом с различной степенью рассеяния электронов различными участками исследуемого образца и в меньшей мере с различием в поглощении электронов этими участками. Контраст усиливают также, применяя «электронные красители » (четырёхокись осмия, уранил и др.), избирательно связывающиеся с некоторыми участками объекта. Устроенные подобным образом современные просвечивающие электронные микроскопы обеспечивают максимальное полезное увеличение до 400000 раз, что соответствует разрешающей способности в 5,0 Å. Выявляемое с использованием просвечивающей электронной микроскопии тонкое строение бактериальных клеток называют ультраструктурой .

В отражательном (сканирующем) электронном микроскопе изображение создается с помощью электронов, отраженных (рассеянных) поверхностным слоем объекта при его облучении под малым углом (приблизительно несколько градусов) к поверхности. Соответственно, образование изображения обусловлено различием рассеяния электронов в разных точках объекта в зависимости от его поверхностного микрорельефа, а сам результат подобной микроскопии предстает в виде структуры поверхности наблюдаемого объекта. Контрастность может быть усилена напылением на поверхность объекта частиц металла. Достигнутая разрешающая способность микроскопов такого типа составляет порядка 100 Å.

Оптический микроскоп - прибор для получения увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом. (от др.-греч. μικρός «маленький» и σκοπέω «рассматриваю») — оптический прибор для получения увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом. Источник: Википедия .

Области применения микроскопов

Оптические микроскопы различаются по видам и модификациям для разнообразных областей применения.

Методы микроскопии в современном мире используются практически во всех сферах человеческой деятельности: «перечислить области использования»

В последние десятилетия для микроскопических исследований широко применяется специальное оптическое программное обеспечение. С помощью компьютерных программ достигается непрерывное наблюдение за объектами исследований, что особенно важно для изучения биологических объектов.

Благодаря современным алгоритмам, применяемых в оптическом программном обеспечении, значительно сокращаются затраты рабочего времени

Принципы устройства

Главными компонентами микроскопа являются:

Система оптического микроскопа включает в себя ряд компонентов, основным из которых является объектив.

Оптика микроскопа состоит из двух элементов — окуляра и объектива которые закреплены в подвижном тубусе, находящимся на металлическом основании с предметный столиком. Увеличение микроскопа без дополнительных линз между окуляром и объективом равно произведению их увеличений

В наше время в микроскопе почти всегда есть система освещения и микро и макро винтами для настройки резкости.

В зависимости от назначения к исследовательскиму микроскопу могут прилагаться дополнительные системы и устройства, такие как

объективы с увеличеным разрешением 40, апертурой 0,65, коррекцией на толщину покровного стекла 0,17 мм и бесконечную длину тубуса

Объективы оптического микроскопа являются одной из главных частей и представляют собой сложный механизм для увеличения изображения изучаемого предмета. Увеличенное с помощью оптического объектива изображение предмета рассматривается через окуляр, который также в свою очередь может создавать увеличение. Если объектив микроскопа каким-то образом искажает изображение, то это искажение будет усилено окуляром. Объектив микроскопа это сложная оптическая система, увеличевающее изображение объекта. Она является наиболее ответственной и основной частью исследовательского оборудования. Рассмотреть изображение созданное объективом, можно через окуляр.

Объективы исследовательских и других микроскопов кисключая стереоскопические в большей степени взаимозаменяемые и унифицированые. На взаимную заменяемость в первую очередь влияют присоединительные параметры объектива.

Объектами исследований микроскопов могут являться любые органические и не органические предметы, живые и не живые ткани, целые биологические организмы или их отдельные части.

Микроскоп имеет в качестве осветительной оптической системы галогеновую лампу или светодиодную систему. Достоинством светодиода является крайне долгое время работы, по сравнению с обычными галогеновыми лампами (в 100 и более раз превышающее данный показатель); малое энергопотребление (составляющее от 1/3 до 1/10 энергопотребления обычной лампы); спектральная “чистота” и т.д.

Конденсоры

Конденсоры оптического микроскопа являются главным элементом системы и большей частью представляют собой отдельный, чаще - съёмный, агрегат. Конденсоры монтируются непосредственно рядом с предметным столиком и осуществляют освещение объекта. Неотъемлемой деталью конденсора является апертурная ирисовая диафрагма.

Диафрагма предназначена для ограничения количества света только в той части препарата, которая изучается в данный момент времени. Особенно это полезно при работе с большими увеличениями, когда необходимо подсветить только небольшую площадь образца.


Открытая полевая диафрагма увеличивает ширину луча света. Данная настройка применяется при работе с малыми увеличениями (большее поле зрения)


Закрытие диафрагмы приводит к сужению луча света

Предметный столик под микроскоп

Неотъемлемой частью конструкции, которой обладает микроскоп является предметный столик , представляющий собой поверхность на которую устанавливают препарат для исследований. Предметные столики разделяются на подвижные и неподвижные. Неподвижные предметные столики монтируются на самом простом и дешёвом оборудовании используемом для обучения детей в школах.

Даже самые простые предметные столики под микроскоп позволяют перемещение в двух координатных плоскостях, а более сложные обеспечивают перемещение по трём осям и поворот на определённый угол.

Применяемые объективы и их основные характеристики

Как уже говорилось ранее, оптические микроскопы объективы которых являются одной из самых главных частей. Это весьма сложная оптическая конструкция, которая интегрирует в себе фронтальную линзу и комбинацию внутренних линз. В зависимости от уровня поставленных задач в объективе может быть до четырнадцати различных линз.

Основные данные обычно указываются на корпусе оптического объектива.

Микроскоп может иметь следующие объективы:

  • Ахроматы (ахроматические);
  • Планапохроматические
  • Планахроматические
  • Планфлуораты

Ахроматические объективы корректируют аберрацию красного и фиолетового спектров. Также они уменьшают сферическую аберрацию, сферохроматическую аберрацию.

Планахроматические объективы практически полностью уничтожают сферическую аберрацию. В отличие от ахроматических объективов апохроматические -почти не искажают природный цвет объекта.

Основным преимуществом планапохроматических оптических объективов является возможность с их помощью получать резкое и не искажённое изображение по всему полю. Кроме этого некоторые модификации объективов плоского поля корректируют хроматические аберрации.

Степень увеличения изображения изучаемого предмета является одним из основных параметров оптических объективов. По степени увеличения объективы подразделяются на:

  • малого увеличения - до 10х;
  • среднего увеличения - от 10х до 50х;
  • большого увеличения - от 50х до 100х;

Следующей важной характеристикой объективов является их числовая апертура, которая показывает разрешающую способность оптической системы микроскопа и определяется величиной минимального расстояния при котором объектив может различить две соседние точки.

По величине апертуры объективы делятся на

  • объективы с малой апертурой - до 0,25;
  • со средней апертурой - до 0,65;
  • с большой апертурой - больше 0,65.

Микроскопы компании Nikon

Микроскопы торговой марки Nikon занимают высшую ступеньку. Это современные микроскопы, в которых конструкторы интегрировали самые новые и современные инновационные технические решения и возможности мировой науки и техники.

По сфере применения микроскопы компании Nikon подразделяются на следующие группы:

  • биологический микроскоп;
  • стереомикроскопы.

Биомедицинские или биологические микроскопы Nikon используются для современных биологических и медицинских исследований по изучению живых организмов и объектов, а также для автоматизированных и многоцелевых лабораторных анализов.

Среди биомедицинских Nikon выделяются следующие модельные ряды:

  • Микроскоп Nikon Eclipse Е;
  • Микроскоп Nikon Eclipse Ci;
  • Микроскоп Nikon Ni ;
  • Микроскоп Nikon Ti .

Стереомикроскопы Nikon позволяют оператору наблюдать трёхмерный объект исследования с возможностью получения вполне естественного изображения.

Среди стереомикроскопов Никон выделяются следующие серии моделей:

  • Микроскоп Nikon SMZ1270/1270i;
  • Микроскоп Nikon SMZ800N;
  • Микроскоп Nikon SMZ25/SMZ18;
  • Микроскоп Nikon SMZ745/745T;
  • Nikon SMZ 660;
  • Nikon SMZ 445/460.

Документация(фиксирование) изображения.

Интеграция современных микроскопов Nikon с цифровыми камерами позволяет вести непрерывное наблюдение за рассматриваемыми объектами с одновременной фиксацией и записью их изображений. Цифровые камеры, в настоящее время широко применяются для наблюдений за живыми организмами, а также в других отраслях науки и техники.

Компания Nikon выпускает следующие цифровые камеры:










Nikon DS-Fi2 Nikon DS-Qi1 Nikon DS-Vi1 Nikon DS-Fi1c Nikon DS-Ri1

  • цифровую камеру Nikon DS-Fi2 ;
  • цифровую камеру Nikon DS-Qi1 ;
  • цифровую камеру Nikon DS-Vi1 ;
  • цифровую камеру Nikon DS-Fi1c ;
  • цифровую камеру Nikon DS - Ri 1 .

Каталог микроскопов

Прямые микроскопы Eclipse Е
Eclipse Ci
Nikon Ni
Nikon Ti
Стереомикроскопы SMZ25/SMZ18
SMZ745/745T
SMZ800N
SMZ 660
SMZ 445/460

Классификация по принципу построения изображения

В лабораторных микроскопах наблюдатель видит отраженный или проходящий через свет не всегда так, как если бы он смотрел невооруженным глазом. Луч света может быть подвергнут изменению, как по форме, так и по длине волны или другим свойствам. В связи с этим, выделяют несколько видов лабораторных микроскопов по принципу построения изображения:

  • Метод светлого поля. Для обычного человека это наиболее удобная форма восприятия объекта: светлый фон и темное изображение. Используется в микроскопах проходящего света, поэтому наблюдатель получает то же самое изображение, но в увеличенном виде. Изменения могут вызываться только применением светофильтров из цветного стекла, которые надеваются на объектив. Реже используются интерференционные светофильтры, которые пропускают только определенную длину волны.
  • Метод темного поля. В этих микроскопах все наоборот: темный фон и более светлое изображение либо яркий блестящий контур исследуемого объекта. Достигается это разными способами в зависимости от типа микроскопа. В проходящих падающий свет перекрывается до того момента, как он попадет на объект. В приборах отраженного света луч проходит через кольцевую диафрагму с непрозрачным диском, который по своему размеру превышает выходной зрачок объектива.
  • Метод фазового контраста. Эти микроскопы, которые иногда так и называют - фазовые, - позволяют получить изображения с четко выраженными внешними и внутренними границами. Этот метод хорошо подходит для изучения клеток и тканей.
  • Люминесцентные микроскопы. Их принцип действия строится на свойствах некоторых веществ возбуждать собственное излучение под действием ультрафиолетовых или сине-фиолетовых лучей. Соответствующий яркий источник света направляется на объект, а новые лучи от него «отсекаются» сложной системой светофильтров до получения излучения только определенной длины волны.
  • «Иммерсионные» микроскопы. Эти приборы используются для сложных медико-биологических исследований, где нужно получить контрастное изображение объекта на фоне схожего оттенка. Прямой проходящий свет перекрывается в два этапа: часть до объекта, вторая часть - после объекта с ослаблением.
  • Микроскопы интерференционного (или дифференциально-интерференционного) контраста. Позволяют получить на однотонном фоне объемное изображение того же цвета. Для разделения изображения и фона используется окантовка другого цвета.
  • Ультрафиолетовые и инфракрасные микроскопы. В них освещение и формирование изображения происходит на длинах волн, невидимых для человеческого глаза. Соответственно, для удобства наблюдений такие микроскопы подключаются к компьютеру, который конвертирует изображение.

Современные лабораторные микроскопы далеко не всегда строятся по какому-либо одному принципу. Для лаборатории экономически невыгодно приобретать десятки моделей приборов для разных наблюдений, поэтому сейчас микроскопы выпускаются в модульном исполнении для формирования разных способов построения изображений. Кроме того, многие можно подключать к компьютеру для записи и обработки информации.

Классификация по способу освещения

Для получения качественных результатов наблюдения должны выполняться при хорошей освещенности. Естественный свет используют разве что игрушечные или школьные микроскопы, а для лабораторных приборов нужны дополнительные источники освещения. В зависимости от их вида и расположения в системе микроскопа, выделяют следующие варианты конструкции:

  • Микроскопы проходящего света. Стандартный способ построения микроскопа, который использовался еще в самых первых моделях и часто встречается в наши дни. Принцип их работы связан с тем, что свет от внешнего источника проходит сквозь объект, а человек в этом время наблюдает его через бинокулярную насадку. По такому принципу могут строиться микроскопы всех видов, включая стереоскопические. С их помощью можно изучать прозрачные и полупрозрачные объекты.
  • Микроскопы отраженного света. Здесь наблюдатель видит не сам объект исследования напрямую, а смотрит на изображение, которое от него отразилось. Микроскопы плоского поля (инвертированные или прямые), а также стереоскопические, могут изготавливаться по этому принципу. С помощью отраженного света хорошо исследовать непрозрачные предметы с разной степенью отражающей способности, а также полупрозрачные образцы.

В свою очередь, лабораторные микроскопы отраженного света тоже делятся на две основные категории:

  • «Оригинальные» микроскопы отраженного света, в которых свет проходит через оптическую систему микроскопа, отражается от объекта, а затем снова проходит через оптику. В первом случае объектив становится частью осветительной системы, во втором - основным элементом, который увеличивает отраженный от объекта свет и передает его наблюдателю.
  • Во втором варианте конструкции свет падает на объект напрямую, а не через оптическую систему микроскопа. Увеличение происходит за счет прохождения отраженного света через объектив. По такому принципу, как правило, строятся стереоскопические микроскопы.

Существуют и люминесцентные приборы плоского поля, в которых есть осветитель отраженного света. В них рассматриваемое изображение строится не тем лучом света, который прошел через оптику, отразился от объекта и вновь прошел через объектив. Другими словами, используется один и тот же луч света, но вот его длина после отражения от объекта и повторного прохождения через оптику будет другой. Часто бывает так, что в одном микроскопе объединяют разные осветительные системы. Это делается для того, чтобы сделать прибор универсальным для изучения всех видов объектов.

Цель: ознакомиться со строением микроскопа, правилами работы с ним, техникой изготовления простейших препаратов, правилами оформления результатов наблюдений.

Материалы и оборудование: микроскоп, предметные и покровные стекла, капельницы с водой и лактофенолом, препаровальные иглы, споры плауна, пыльца мальвы, черешки листа бегонии, листья традесканции.

Строение микроскопа

Микроскоп представляет собой оптико-механический прибор, позволяющий получать сильно увеличенное изо­бражение рассматриваемого предмета, размеры которо­го лежат за пределами разрешающей способно­сти невооруженного глаза. Человек с нормальным зре­нием различает две точки как две или две линии как две, а не одну, лишь в том случае, если расстояние меж­ду ними не менее 100 мкм. Таким образом, разрешающая способность глаза невелика. При работе с микроскопом расстояние между двумя точками или линиями, на котором они не кажутся слившимися, сокращается до десятых долей микрометра. Иными словами, разрешающая способность световых микроскопов в 300–400 раз выше разрешающей способ­ности невооруженного глаз и равна 0,2–0,3 мкм.

Полезное увеличение современных оптических микро­скопов достигает 1400 раз, выявляя при этом мельчай­шие детали строения изучаемого объекта.

В микроскопе различают оптическую и меха­ническую системы.

Оптическая система состоит из трех частей: осветительного аппарата, объектива и окуляра (рис. 1).

Между объективом и окуляром расположен тубус. Все эти части строго центрированы и вмонтированы в штатив, представляющий собой механическую си­стему микроскопа. Штатив состоит из массивного ос­нования, предметного столика, дуги, или тубусодержателя, и подающих механизмов, передвигаю­щих предметный столик в вертикальном направлении.


Рис. 1. Устройство светового монокулярного (А)

и бинокулярного (Б) микроскопа:

1 – окуляры; 2 – бинокулярная насадка; 3 – винт крепления насадки; 4 – револьверное устройство; 5 – объективы; 6 – винтовой упор (ограничитель перемещения предметного столика при фокусировке; 7 – предметный столик; 8 – рукоятка перемещения предметного столика в двух взаимно–перпендикулярных направлениях; 9 – рукоятка грубой фокусировки; 10 – рукоятка точной фокусировки; 11 – коллектор в оправе; 12 – основание микросокопа; 13 – конденсор; 14 – винт крепления конденсора; 15 – препаратоводитель

Осветительный аппарат представлен конден­сором с ирисовой диафрагмой и осветителем с галогеновой лампой накаливания. Конденсор располагается в кольце под столиком микроскопа. Он состоит из двух или трех линз, вставленных в ци­линдрическую оправу. Кон­денсор служит для наилуч­шего освещения изучаемого препарата. Фронтальная линза конденсора должна быть установлена на уровне предметного столика микроскопа или несколько ниже его.

В нижней части конден­сора находится ирисовая диафрагма. Она представ­ляет собой систему много­численных тонких пласти­нок («лепестков»), подвиж­но укрепленных в круглой оправе. С помощью регулировочного кольца можно изме­нять размеры отверстия ди­афрагмы, которое всегда сохраняет центральное по­ложение. Этим регулируется диаметр пучка света, иду­щего от лампы в конден­сор. Под диафрагмой укреп­лено кольцо, в которое вставляется светофильтр, обычно из матового стекла.

Встроенный в основание микроскопа осветитель включает коллектор в оправе, который ввинчивается в отверстие основания, и держатель галогеновой лампы накаливания 6В, 20Вт. Включение осветителя осуществляется с помощью выключателя, расположенного на задней поверхности основания микроскопа. Вращая диск регулировки накала лампы, расположенный на боковой поверхности основания микроскопа слева от наблюдателя, можно изменять яркость накаливания лампы.

Пройдя через конденсор и преломившись в его лин­зах, лучи, идущие от источника света, освещают препарат, лежащий на столике микроскопа, проходят сквозь него, и далее в виде расходящегося пучка входят в объ­ектив.

Частично закрывая нижнюю линзу конденсора, диаф­рагма задерживает боковые лучи, благодаря чему полу­чается более резкое изображение объекта.

Объектив представляет собой наиболее важную часть оптической системы. Он состоит из нескольких линз, вправленных в металлическую гильзу. Объективы с боль­шими увеличениями включают 8–10 линз и более. Объ­ектив дает изображение объекта с обратным расположе­нием частей. При этом он выявляет («разрешает») структуры, недоступные невооруженному глазу, с большими или меньшими подробностями в зависимости от качества объектива. Изображение строится объективом в плоскости диафрагмы окуляра, расположенного в верх­ней части трубы (тубуса) микроскопа. Оптические свой­ства объектива зависят от его устройства и качества линз. Наиболее сильные объективы дают 120-кратные увеличения. На лабораторных занятиях обычно работают с объективами, уве­личивающими в 4, 20, 40 раз.

Большое значение при работе с микроскопом имеет рабочее расстояние объектива, т. е. расстояние от ниж­ней (фронтальной) линзы объектива до объекта (до верхней поверхности предметного стекла). У объективов с 40-кратным увеличением это расстояние равно 0,6 мм. Поэтому желательно пользовать­ся покровными стеклами, толщина которых меньше ра­бочего расстояния. Нормальная толщина покровного стекла 0,17–0,18 мм.

Окуляр устроен значительно проще объектива. Некоторые окуляры состоят лишь из двух линз и диаф­рагмы, вставленных в цилиндрическую оправу. Верхняя (окулярная) линза служит для наблюдения, нижняя («коллектив») играет вспомогательную роль, фокусируя изображение, построенное объективом. Диафрагма оку­ляра определяет границы поля зрения.

На нижнем конце тубусодержателя укреплено револьверное устройство – вращающийся диск с гнездами, имеющими нарезку для ввинчивания объективов. Ход винтовой нарезки гнезд револьверного устройства и объективов стандартизован, поэтому объективы подходят к микроскопам разных моделей. Тубусодержатель неподвижно соединена со штативом.

Микроскоп сконструирован так, что препарат распо­лагается между главным фокусом объектива и его двойным фокусным расстоянием. В трубе микроскопа, в плоскости диафрагмы окуляра, находящейся между главным фокусом и оптическим центром верхней линзы окуляра, объектив строит действительное увеличенное обратное изображение предмета. Действуя как лупа, верхняя линза или система линз окуляра дает мнимое прямое увеличенное изображение. Таким образом, изо­бражение, которое получается с помощью микроскопа, оказывается дважды увеличенным и обратным по отношению к изучаемому предмету (рис. 2). Общее увеличе­ние микроскопа при нормальной (160 мм) длине тубуса равно увеличению объектива, умноженному на увеличе­ние окуляра.

Квадратный предметный столик имеет в центре отверстие, в ко­торое входит верхняя часть конденсора. Предметный столик вместе с препаратом можно передвигать вперед назад. Современные микроскопы также снабжены препаратоводителем, с помощью которого препарат можно передвигать вперед назад по предметному столику. Для этого служат два винта, располо­женные на оси справа


Рис. 2. Ход лучей в микроскопе:

АВ – предмет; O 1 – объектив микроскопа, который дает увеличенное обратное и действительное изображение предмета A 1 B 1 . Изображение предмета лежит в фокальной плоскости F 2 окуляра микроскопа О 2 , через который оно рассматривается, как в лупу. В фокальной плоскости F 3 хрусталика глаза О 3 получается действительное изображение предмета А 2 В 2 . Возможно и такое расположение O 1 и О 2 , когда A 1 B 1 располагается между F 2 и О 2

под предметным столиком. С помощью верхнего винта передвигают предметный столик, а с помощью нижнего – препарат.

Передвижение препарата с объектом для наведения резкости осуществляется при перемещении предметного столика, который подвижно соединен с тубусодержателем. С помощью подающих механизмов его можно передвигать по вертикали (вверх – вниз) для наведения на фо­кус. У большинства современных микроскопов эти меха­низмы (винты) укреплены в основании тубусодержателя.

Грубая фокусировка осуществляется с помощью макрометренного винта (кремальеры). Тон­кая фокусировка осуществляется микрометренным вин­том. На барабане микрометренного винта нанесены деления. Передвижение на одно деление соответствует подъему или опусканию трубы на 2 мкм. При полном обороте винта труба передвигается на 100 мкм.

Механизмы макрометренной и особенно микрометренной подачи изготовляются очень точно и требуют осто­рожного обращения. Вращать винты следует плавно, без рывков и применения силы.

Существуют различные модели учебных и исследовательских световых микроскопов. Подобные микроскопы позволяют определить форму клеток микроорганизмов, их размер, подвижность, степень морфологической гетерогенности, а также способность микроорганизмов к дифференцирующему окрашиванию.

Успех наблюдения объекта и надежность получаемых результатов зависят от хорошего знания оптической системы микроскопа.

Рассмотрим устройство и внешний вид биологического микроскопа, модель XSP–136 (Ningbo teaching instrument Co., LTD), работу его составных частей. Микроскоп имеет механическую и оптическую части (рисунок 3.1).

Рисунок 3.1 –Устройство и внешний вид микроскопа

Механическая часть биологического микроскопа включает штатив с предметным столиком; бинокулярную насадку; рукоятку грубой настройки на резкость; рукоятку точной настройки на резкость; рукоятки перемещения предметного столика вправо/влево, вперед/назад; револьверное устройство.

Оптическая часть микроскопа включает осветительный аппарат, конденсор, объективы и окуляры.

Описание и работа составных частей микроскопа

Объективы. Объективы (тип ахроматы), входящие в комплект микроскопа, рассчитаны на механическую длину тубуса микроскопа 160 мм, линейное поле зрения в плоскости изображения 18 мм и толщину покровного стекла 0,17 мм. На корпусе каждого объектива нанесено линейное увеличение, например, 4х; 10х; 40х; 100х и, соответственно, указана числовая апертура 0,10; 0,25; 0,65; 1,25, а также цветовая маркировка.

Бинокулярная насадка. Бинокулярная насадка обеспечивает визуальное наблюдение изображения объекта; устанавливается в гнездо штатива и закрепляется винтом.

Установка расстояния между осями окуляров в соответствии с глазной базой наблюдателя осуществляется разворотом корпусов с окулярными тубусами в диапазоне от 55 до 75 мм.

Окуляры. В комплект микроскопа входят два широкоугольных окуляра с увеличением 10х.

Револьверное устройство. Четырехгнездное револьверное устройство обеспечивает установку объективов в рабочее положение. Смена объективов производится вращением рифленого кольца револьверного устройства до фиксированного положения.

Конденсор. В комплект микроскопа входит конденсор светлого поля Аббе с ирисовой диафрагмой и фильтром, числовая апертура А=1,25. Конденсор устанавливается в кронштейн под предметным столиком микроскопа и закрепляется винтом. В конденсоре светлого поля имеется ирисовая апертурная диафрагма и откидная оправа для установки светофильтра.

Осветительное устройство. Для получение равномерно освещенного изображения объектов в микроскопе имеется осветительное светодиодное устройство. Включение осветителя осуществляется с помощью выключателя, расположенного на задней поверхности основания микроскопа. Вращая диск регулировки накала лампы, расположенный на боковой поверхности основания микроскопа слева от наблюдателя, можно изменять яркость освещения.

Фокусировочный механизм. Фокусировочный механизм расположен в штативе микроскопа. Фокусирование на объект производится перемещением по высоте предметного столика вращением рукояток, расположенных по обеим сторонам штатива. Грубое перемещение осуществляется рукояткой большего размера, точное перемещение – рукояткой меньшего размера.

Предметный столик. Предметный столик обеспечивает перемещение объекта в горизонтальной плоскости. Диапазон перемещения столика равен 70x30 мм. Объект крепится на поверхности столика между держателем и прижимом препаратоводителя, для чего прижим отводится в сторону.

Работа с микроскопом

Перед началом работы с препаратами необходимо правильно настроить освещение. Это позволяет добиться максимального разрешения и качества изображения микроскопа. Для работы с микроскопом следует отрегулировать раскрытие окуляров таким образом, чтобы два изображения слились в одно. Кольцо диоптрийной коррекции на правом окуляре следует установить «на ноль», если острота зрения обоих глаз одинакова. В противном случае необходимо выполнить общую наводку на резкость, после чего закрыть левый глаз и добиться максимальной резкости для правого, вращая кольцо коррекции.

Исследование препарата рекомендуется начинать с объектива наименьшего увеличения, который используется в качестве поискового при выборе участка для более подробного изучения, затем можно переходить к работе с более сильными объективами.

Убедитесь в том, что объектив 4х готов к работе. Это поможет вам установить предметное стекло на место, а также разместить объект для исследования. Поместите предметное стекло на предметный столик и осторожно зажмите его при помощи пружинных держателей.

Подсоедините сетевой шнур и включите микроскоп.

Всегда начинайте исследование с объективом 4х. Для достижения четкости и резкости изображения исследуемого объекта используйте рукоятки грубой и точной фокусировки. Если при помощи слабого объектива 4х было получено желаемое изображение, поверните револьверное устройство на следующее большее значение 10х. Револьвер должен зафиксироваться в нужном положении.

Наблюдая за объектом в окуляр, поверните рукоятку (большого диаметра) грубой фокусировки. Чтобы получить наиболее четкое изображение используйте рукоятку (маленького диаметра) четкой фокусировки.

Чтобы контролировать поток света, проходящего через конденсор, можно открыть или закрыть ирисовую диафрагму, расположенную под предметным столиком. Изменяя настройки, можно добиться наиболее четкого изображения исследуемого объекта.

Во время фокусировки не следует допускать соприкосновения объектива с объектом исследования. При увеличении объектива до 100х объектив располагается очень близко к предметному стеклу.

Правила обращения и ухода за микроскопом

1 Микроскоп необходимо содержать в чистоте и предохранять от повреждений.

2 Для сохранения внешнего вида микроскопа, его необходимо периодически протирать мягкой салфеткой, слегка пропитанной бескислотным вазелином, предварительно удалив пыль, а затем вытирать сухой мягкой чистой салфеткой.

3 Металлические детали микроскопа необходимо содержать в чистоте. Для чистки микроскопа следует использовать специальные смазочные некоррозирующие жидкости.

4 Для предохранения оптических деталей визуальной насадки от пыли необходимо оставлять окуляры в окулярных тубусах.

5 Нельзя касаться пальцами поверхностей оптических деталей. В случае если на линзу объектива попала пыль, ее следует удалить пыль при помощи вентилятора или кисточки. В случае если пыль проникла внутрь объектива и на внутренних поверхностях линз образовался мутный налет, необходимо отправить объектив для чистки в оптическую мастерскую.

6 Во избежание нарушения юстировки необходимо предохранять микроскоп от толчков и ударов.

7 Во избежание попадания пыли на внутреннюю поверхность линз микроскоп необходимо хранить под чехлом или в упаковке.

8 Не следует самостоятельно разбирать микроскоп и его составные для устранения неисправностей.

Меры безопасности

При работе с микроскопом источником опасности является электрический ток. Конструкция микроскопа исключает возможность случайного соприкосновения к токоведущим частям, находящимся под напряжением.

В микроскопе различают механическую и оптическую части. Механическая часть представлена штативом (состоящим из основания и тубусодержателя) и укрепленным на нем тубусом с револьвером для крепления и смены объективов. К механической части относятся также: предметный столик для препарата, приспособления для крепления конденсора и светофильтров, встроенные в штатив механизмы для грубого (макромеханизм, макровинт) и тонкого (микромеханизм, микровинт) перемещения предметного столика или тубусодержателя.

Оптическая часть представлена объективами, окулярами и осветительной системой, которая в свою очередь состоит из расположенных под предметным столиком конденсора Аббе и встроенного осветителя с низковольтной лампой накаливания и трансформатором. Объективы ввинчиваются в револьвер, а соответствующий окуляр, через который наблюдают изображение, устанавливают с противоположной стороны тубуса.

Рисунок 1. Устройство микроскопа

К механической части относится штатив, состоящий из основания и тубусодержателя. Основание служит опорой микроскопа и несет всю конструкцию штатива. В основании находится также гнездо для зеркала или встроенный осветитель.

  • предметный столик, служащий для размещения препаратов и горизонтальногоих перемещения;
  • узел для крепления и вертикального светофильтров.

В большинстве современных микроскопов фокусировка осуществляется путем вертикального перемещения предметного столика с помощью макро- и микромеханизма при неподвижном тубусодержателе. Это позволяет установить на тубусодержатель различные насадки (микрофото и т.п.). В некоторых конструкциях микроскопов, предназначенных для работы с микроманипулятором, фокусировка осуществляется вертикальным перемещением тубусодержателя при неподвижном предметном столике.

Тубус микроскопа - узел, служащий для установки объективов и окуляров на определенном расстоянии друг от друга. Он представляет собой трубку, в верхней части которой находится окуляр или окуляры, а в нижней - устройство для крепления и смены объективов. Обычно это револьвер с несколькими гнездами для быстрой смены объективов различного увеличения. В каждом гнезде револьвера объектив закреплен таким образом, что он всегда остается центрированным по отношению к оптической оси микроскопа. В настоящее время конструкция тубуса существенно отличается от прежних микроскопов тем, что части тубуса несущие окуляры и револьвер с объективами, конструктивно не связаны. Роль средней части тубуса может выполнять штатив.
Механическая длина тубуса биологических микроскопов обычно составляет 160мм. В тубусе между объективом и окуляром могут располагаться призмы, изменяющие направление хода лучей и промежуточные линзы, изменяющие окулярное увеличение и оптическую длину тубуса.

Существуют различные взаимозаменяемые конструкции участка тубуса, несущего окуляры (прямой и наклонный) и различающиеся по количеству окуляров (окулярные насадки):

  • монокулярные - с одним окуляром, для наблюдения одним глазом;
  • бинокулярные - с двумя окулярами, для одновременного наблюдения двумя глазами, которые могут различаться по конструкции в зависимости от модели микроскопа;
  • тринокулярные - с двумя окулярами и проекционным выходом, позволяющие одновременно с визуальным наблюдением двумя глазами, проецировать изображение препарата соответствующей оптикой на монитор компьютера или другой приемник изображения.



Помимо тубусодержателя с тубусом к механической части микроскопа относятся:

  • кронштейн для крепления предметного столика;
  • предметный столик, служащий для размещения препаратов и горизонтального перемещения в двух перпендикулярных направлениях относительно оси микроскопа. Конструкция некоторых столиков позволяет вращать препарат. Вертикальное перемещение предметного столика осуществляется макро- и микромеханизмом.
  • приспособления для крепления и вертикального перемещения конденсора и его центрировки, а также для помещения светофильтров.
Выбор редакции
Международный женский день, хоть и был изначально днем равенства полов и напоминанием, того, что женщины имеют те же права, что мужчины,...

Философия оказала большое влияние на жизнь человека и общества. Несмотря на то, что большинство великих философов уже давно умерли, их...

В молекуле циклопропана все атомы углерода расположены в одной плоскости.При таком расположении атомов углерода в цикле валентные углы...

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него:...
Слайд 2 Визитная карточка Территория: 1 219 912 км² Население: 48601098чел. Столица: Кейптаун Официальный язык: английский, африкаанс,...
Всякая организация включает в свой состав объекты, классифицируемые как ОС, по которым проводятся амортизационные отчисления. В рамках...
Новым кредитным продуктом, получившим широкое распространение в зарубежной практике, является факторинг. Он возник на базе товарного...
Очень мы в нашей семье любим чизкейки, а с добавлением ягод или фруктов они особенно вкусные и ароматные. Сегодня рецепт чизкейка, с...
У Плешакова возникла хорошая идея - создать для детей атлас, по которому легко определять звезды и созвездия. Наши учителя эту идею...