Как найти наибольшее и наименьшее значения функции в ограниченной замкнутой области? Нахождение наибольшего и наименьшего значения функции на отрезке.


Наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение ординаты на рассматриваемом интервале.

Чтобы найти наибольшее или наименьшее значение функции необходимо:

  1. Проверить, какие стационарные точки входят в заданный отрезок.
  2. Вычислить значение функции на концах отрезка и в стационарных точках из п.3
  3. Выбрать из полученных результатов наибольшее или наименьшее значение.

Чтобы найти точки максимума или минимума необходимо:

  1. Найти производную функции $f"(х)$
  2. Найти стационарные точки, решив уравнение $f"(х)=0$
  3. Разложить производную функции на множители.
  4. Начертить координатную прямую, расставить на ней стационарные точки и определить знаки производной в полученных интервалах, пользуясь записью п.3.
  5. Найти точки максимума или минимума по правилу: если в точке производная меняет знак с плюса на минус, то это будет точка максимума (если с минуса на плюс, то это будет точка минимума). На практике удобно использовать изображение стрелок на промежутках: на промежутке, где производная положительна, стрелка рисуется вверх и наоборот.

Таблица производных некоторых элементарных функций:

Функция Производная
$c$ $0$
$x$ $1$
$x^n, n∈N$ $nx^{n-1}, n∈N$
${1}/{x}$ $-{1}/{x^2}$
${1}/x{^n}, n∈N$ $-{n}/{x^{n+1}}, n∈N$
$√^n{x}, n∈N$ ${1}/{n√^n{x^{n-1}}, n∈N$
$sinx$ $cosx$
$cosx$ $-sinx$
$tgx$ ${1}/{cos^2x}$
$ctgx$ $-{1}/{sin^2x}$
$cos^2x$ $-sin2x$
$sin^2x$ $sin2x$
$e^x$ $e^x$
$a^x$ $a^xlna$
$lnx$ ${1}/{x}$
$log_{a}x$ ${1}/{xlna}$

Основные правила дифференцирования

1. Производная суммы и разности равна производной каждого слагаемого

$(f(x) ± g(x))′= f′(x)± g′(x)$

Найти производную функции $f(x) = 3x^5 – cosx + {1}/{x}$

Производная суммы и разности равна производной каждого слагаемого

$f′(x)=(3x^5)′–(cosx)′+({1}/{x})"=15x^4+sinx-{1}/{x^2}$

2. Производная произведения.

$(f(x)∙g(x))′=f′(x)∙g(x)+f(x)∙g(x)′$

Найти производную $f(x)=4x∙cosx$

$f′(x)=(4x)′∙cosx+4x∙(cosx)′=4∙cosx-4x∙sinx$

3. Производная частного

$({f(x)}/{g(x)})"={f^"(x)∙g(x)-f(x)∙g(x)"}/{g^2(x)}$

Найти производную $f(x)={5x^5}/{e^x}$

$f"(x)={(5x^5)"∙e^x-5x^5∙(e^x)"}/{(e^x)^2}={25x^4∙e^x-5x^5∙e^x}/{(e^x)^2}$

4. Производная сложной функции равна произведению производной внешней функции на производную внутренней функции

$f(g(x))′=f′(g(x))∙g′(x)$

$f′(x)=cos′(5x)∙(5x)′= - sin(5x)∙5= -5sin(5x)$

Найдите точку минимума функции $y=2x-ln⁡(x+11)+4$

1. Найдем ОДЗ функции: $х+11>0; х>-11$

2. Найдем производную функции $y"=2-{1}/{x+11}={2x+22-1}/{x+11}={2x+21}/{x+11}$

3. Найдем стационарные точки, приравняв производную к нулю

${2x+21}/{x+11}=0$

Дробь равна нулю если числитель равен нулю, а знаменатель не равен нулю

$2x+21=0; x≠-11$

4. Начертим координатную прямую, расставим на ней стационарные точки и определим знаки производной в полученных интервалах. Для этого подставим в производную любое число из крайней правой области, например, нуль.

$y"(0)={2∙0+21}/{0+11}={21}/{11}>0$

5. В точке минимума производная меняет знак с минуса на плюс, следовательно, точка $-10,5$ - это точка минимума.

Ответ: $-10,5$

Найдите наибольшее значение функции $y=6x^5-90x^3-5$ на отрезке $[-5;1]$

1. Найдем производную функции $y′=30x^4-270x^2$

2. Приравняем производную к нулю и найдем стационарные точки

$30x^4-270x^2=0$

Вынесем общий множитель $30x^2$ за скобки

$30x^2(x^2-9)=0$

$30x^2(х-3)(х+3)=0$

Приравняем каждый множитель к нулю

$x^2=0 ; х-3=0; х+3=0$

$х=0;х=3;х=-3$

3. Выберем стационарные точки, которые принадлежат заданному отрезку $[-5;1]$

Нам подходят стационарные точки $х=0$ и $х=-3$

4. Вычислим значение функции на концах отрезка и в стационарных точках из п.3

В этой статье я расскажу о том, как применять умение находить к исследованию функции: к нахождению ее наибольшего или наименьшего значения. А затем мы решим несколько задач из Задания В15 из Открытого банка заданий для .

Как обычно, сначала вспомним теорию.

В начале любого исследования функции находим ее

Чтобы найти наибольшее или наименьшее значение функции , нужно исследовать, на каких промежутках функция возрастает, и на каких убывает.

Для этого надо найти производную функции и исследовать ее промежутки знакопостоянства, то есть промежутки, на которых производная сохраняет знак.

Промежутки, на которых производная функции положительна, являются промежутками возрастания функции.

Промежутки, на которых производная функции отрицательна, являются промежутками убывания функции.

1 . Решим задание В15 (№ 245184)

Для его решения будем следовать такому алгоритму:

а) Найдем область определения функции

б) Найдем производную функции .

в) Приравняем ее к нулю.

г) Найдем промежутки знакопостоянства функции.

д) Найдем точку, в которой функция принимает наибольшее значение.

е) Найдем значение функции в этой точке.

Подробное решение этого задания я рассказываю в ВИДЕОУРОКЕ:

Вероятно, Ваш браузер не поддерживается. Чтобы использовать тренажёр "Час ЕГЭ", попробуйте скачать
Firefox

2 . Решим задание В15 (№282862)

Найдите наибольшее значение функции на отрезке

Очевидно, что наибольшее значение на отрезке функция принимает в точке максимума, при х=2. Найдем значение функции в этой точке:

Ответ: 5

3 . Решим задание В15 (№245180):

Найдите наибольшее значение функции

1. title="ln5>0">, , т.к. title="5>1">, поэтому это число не влияет на знак неравенства.

2. Т.к по область определения исходной функции title="4-2x-x^2>0">, следовательно знаменатель дроби всегда больще нуля и дробь меняет знак только в нуле числителя.

3. Числитель равен нулю при . Проверим, принадлежит ли ОДЗ функции. Для этого проверим, выполняется ли условие title="4-2x-x^2>0"> при .

Title="4-2(-1)-{(-1)}^2>0">,

значит, точка принадлежит ОДЗ функции

Исследуем знак производной справа и слева от точки :

Мы видим, что наибольшее значение функция принимает в точке . Теперь найдем значение функции при :

Замечание 1. Заметим, что в этой задаче мы не находили область определения функции: мы только зафиксировали ограничения и проверили, принадлежит ли точка, в которой производная равна нулю области определения функции. В данной задаче этого оказалось достаточно. Однако, так бывает не всегда. Это зависит от задачи.

Замечание 2. При исследовании поведения сложной функции можно пользоваться таким правилом:

  • если внешняя функция сложной функции возрастающая, то функция принимает наибольшее значение в той же точке, в которой внутренняя функция принимает наибольшее значение. Это следует из определения возрастающей функции: функция возрастает на промежутке I, если большему значению аргумента из этого промежутка соответствует большее значение функции.
  • если внешняя функция сложной функции убывающая, то функция принимает наибольшее значение в той же точке, в которой внутренняя функция принимает наименьшее значение. Это следует из определения убывающей функции: функция убывает на промежутке I, если большему значению аргумента из этого промежутка соответствует меньшее значение функции

В нашем примере внешняя функция - возрастает на всей области определения. Под знаком логарифма стоит выражение - квадратный трехчлен, который при отрицательном старшем коэффициенте принимает наибольшее значение в точке . Далее подставляем это значение х в уравнение функции и находим ее наибольшее значение.

Стандартный алгоритм решения таких заданий предполагает после нахождения нулей функции, определение знаков производной на интервалах. Затем вычисление значений в найденных точках максимума (или минимума) и на границе интервала, в зависимости от того какой вопрос стоит в условии.

Советую поступать немного по-другому. Почему? Писал об этом .

Предлагаю решать такие задания следующим образом:

1. Находим производную.
2. Находим нули производной.
3. Определяем какие из них принадлежат данному интервалу.
4. Вычисляем значения функции на границах интервала и точках п.3.
5. Делаем вывод (отвечаем на поставленный вопрос).

В ходе решения представленных примеров подробно не рассмотрено решение квадратных уравнений, это вы должны уметь делать. Так же должны знать .

Рассмотрим примеры:

77422. Найдите наибольшее значение функции у=х 3 –3х+4 на отрезке [–2;0].

Найдем нули производной:

Указанному в условии интервалу принадлежит точка х = –1.

Вычисляем значения функции в точках –2, –1 и 0:

Наибольшее значение функции равно 6.

Ответ: 6

77425. Найдите наименьшее значение функции у = х 3 – 3х 2 + 2 на отрезке .

Найдём производную заданной функции:

Найдем нули производной:

Указанному в условии интервалу принадлежит точка х = 2.

Вычисляем значения функции в точках 1, 2 и 4:

Наименьшее значение функции равно –2.

Ответ: –2

77426. Найдите наибольшее значение функции у = х 3 – 6х 2 на отрезке [–3;3].

Найдём производную заданной функции:

Найдем нули производной:

Указанному в условии интервалу принадлежит точка х = 0.

Вычисляем значения функции в точках –3, 0 и 3:

Наименьшее значение функции равно 0.

Ответ: 0

77429. Найдите наименьшее значение функции у = х 3 – 2х 2 + х +3 на отрезке .

Найдём производную заданной функции:

3х 2 – 4х + 1 = 0

Получим корни: х 1 = 1 х 1 = 1/3.

Указанному в условии интервалу принадлежит только х = 1.

Найдём значения функции в точках 1 и 4:

Получили, что наименьшее значение функции равно 3.

Ответ: 3

77430. Найдите наибольшее значение функции у = х 3 + 2х 2 + х + 3 на отрезке [– 4; –1].

Найдём производную заданной функции:

Найдем нули производной, решаем квадратное уравнение:

3х 2 + 4х + 1 = 0

Получим корни:

Указанному в условии интервалу принадлежит корень х = –1.

Находим значения функции в точках –4, –1, –1/3 и 1:

Получили, что наибольшее значение функции равно 3.

Ответ: 3

77433. Найдите наименьшее значение функции у = х 3 – х 2 – 40х +3 на отрезке .

Найдём производную заданной функции:

Найдем нули производной, решаем квадратное уравнение:

3х 2 – 2х – 40 = 0

Получим корни:

Указанному в условии интервалу принадлежит корень х = 4.

Находим значения функции в точках 0 и 4:

Получили, что наименьшее значение функции равно –109.

Ответ: –109

Рассмотрим способ определения наибольшего и наименьшего значения функций без производной. Этот подход можно использовать, если с определением производной у вас большие проблемы. Принцип простой – в функцию подставляем все целые значения из интервала (дело в том, что во всех подобных прототипах ответом является целое число).

77437. Найдите наименьшее значение функции у=7+12х–х 3 на отрезке [–2;2].

Подставляем точки от –2 до 2: Посмотреть решение

77434. Найдите наибольшее значение функции у=х 3 + 2х 2 – 4х + 4 на отрезке [–2;0].

На этом всё. Успеха вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Как найти наибольшее и наименьшее значения функции на отрезке?

Для этого мы следуем известному алгоритму :

1 . Находим ОДЗ функции.

2 . Находим производную функции

3 . Приравниваем производную к нулю

4 . Находим промежутки, на которых производная сохраняет знак, и по ним определяем промежутки возрастания и убывания функции:

Если на промежутке I производная функции 0" title="f^{prime}(x)>0">, то функция возрастает на этом промежутке.

Если на промежутке I производная функции , то функция убывает на этом промежутке.

5 . Находим точки максимума и минимума функции .

В точке максимума функции производная меняет знак с "+" на "-" .

В точке минимума функции производная меняет знак с "-" на "+" .

6 . Находим значение функции в концах отрезка,

  • затем сравниваем значение функции в концах отрезка и в точках максимума, и выбираем из них наибольшее, если нужно найти наибольшее значение функции
  • или сравниваем значение функции в концах отрезка и в точках минимума, и выбираем из них наименьшее, если нужно найти наименьшее значение функции

Однако, в зависимости от того, как себя ведет функция на отрезке, это алгоритм можно значительно сократить.

Рассмотрим функцию . График этой функции выглядит так:

Рассмотрим несколько примеров решения задач из Открытого банка заданий для

1 . Задание B15 (№ 26695)

На отрезке .

1. Функция определена при всех действительных значениях х

Очевидно, что это уравнений не имеет решений, и производная при всех значениях х положительна. Следовательно, функция возрастает и принимает наибольшее значение в правом конце промежутка, то есть при х=0.

Ответ: 5.

2 . Задание B15 (№ 26702)

Найдите наибольшее значение функции на отрезке .

1. ОДЗ функции title="x{pi}/2+{pi}k, k{in}{bbZ}">

Производная равна нулю при , однако, в этих точках она не меняет знак:

Следовательно, title="3/{cos^2{x}}>=3">, значит, title="3/{cos^2{x}}-3>=0">, то есть производная при всех допустимых значених х неотрицательна, следовательно, функция возрастает и принимает наибольшее значение в правом конце промежутка, при .

Чтобы стало очевидно, почему производная не меняет знак, преобразуем выражение для производной следующим образом:

Title="y^{prime}=3/{cos^2{x}}-3={3-3cos^2{x}}/{cos^2{x}}={3sin^2{x}}/{cos^2{x}}=3tg^2{x}>=0">

Ответ: 5.

3 . Задание B15 (№ 26708)

Найдите наименьшее значение функции на отрезке .

1. ОДЗ функции : title="x{pi}/2+{pi}k, k{in}{bbZ}">

Расположим корни этого уравнения на тригонометрической окружности.

Промежутку принадлежат два числа: и

Расставим знаки. Для этого определим знак производной в точке х=0: . При переходе через точки и производная меняет знак.

Изобразим смену знаков производной функции на координатной прямой:

Очевидно, что точка является точкой минимума (в ней производная меняет знак с "-" на "+"), и чтобы найти наименьшее значение функции на отрезке , нужно сравнить значения функции в точке минимума и в левом конце отрезка, .

Исследование такого объекта математического анализа как функция имеет большое значение и в других областях науки. Например, в экономическом анализе постоянно требуется оценить поведение функции прибыли, а именно определить ее наибольшее значение и разработать стратегию его достижения.

Инструкция

Исследование поведения любой всегда следует начинать с поиска области определения. Обычно по условию конкретной задачи требуется определить наибольшее значение функции либо на всей этой области, либо на конкретном ее интервале с открытыми или закрытыми границами.

Исходя из , наибольшим является значение функции y(x0), при котором для любой точки области определения выполняется неравенство y(x0) ≥ y(x) (х ≠ x0). Графически эта точка будет наивысшей, если расположить значения аргумента по оси абсцисс, а саму функцию по оси ординат.

Чтобы определить наибольшее значение функции , следуйте алгоритму из трех этапов. Учтите, что вы должны уметь работать с односторонними и , а также вычислять производную. Итак, пусть задана некоторая функция y(x) и требуется найти ее наибольшее значение на некотором интервале с граничными значениями А и В.

Выясните, входит ли этот интервал в область определения функции . Для этого необходимо ее найти, рассмотрев все возможные ограничения: присутствие в выражении дроби, квадратного корня и т.д. Область определения – это множество значений аргумента, при которых функция имеет смысл. Определите, является ли данный интервал его подмножеством. Если да, то переходите к следующему этапу.

Найдите производную функции и решите полученное уравнение, приравняв производную к нулю. Таким образом, вы получите значения так называемых стационарных точек. Оцените, принадлежит ли хоть одна из них интервалу А, В.

Рассмотрите на третьем этапе эти точки, подставьте их значения в функцию. В зависимости от типа интервала произведите следующие дополнительные действия. При наличии отрезка вида [А, В] граничные точки входят в интервал, об этом говорят скобки. Вычислите значения функции при х = А и х = В. Если открытый интервал (А, В), граничные значения являются выколотыми, т.е. не входят в него. Решите односторонние пределы для х→А и х→В. Комбинированный интервал вида [А, В) или (А, В], одна из границ которого принадлежит ему, другая – нет. Найдите односторонний предел при х, стремящемся к выколотому значению, а другое подставьте в функцию. Бесконечный двусторонний интервал (-∞, +∞) или односторонние бесконечные промежутки вида: , (-∞, B). Для действительных пределов А и В действуйте согласно уже описанным принципам, а для бесконечных ищите пределы для х→-∞ и х→+∞ соответственно.

Задача на этом этапе

Выбор редакции
Все чаще современному человеку выпадает возможность познакомиться с кухней др. стран. Если раньше французские яства в виде улиток и...

В.И. Бородин, ГНЦ ССП им. В.П. Сербского, Москва Введение Проблема побочных эффектов лекарственных средств была актуальной на...

Добрый день, друзья! Малосольные огурцы - хит огуречного сезона. Большую популярность быстрый малосольный рецепт в пакете завоевал за...

В Россию паштет пришел из Германии. В немецком языке это слово имеет значение «пирожок». И первоначально это был мясной фарш,...
Простое песочное тесто, кисло-сладкие сезонные фрукты и/или ягоды, шоколадный крем-ганаш — совершенно ничего сложного, а в результате...
Как приготовить филе минтая в фольге - вот что необходимо знать каждой хорошей хозяйке. Во-первых, экономно, во-вторых, просто и быстро,...
Салат «Обжорка «, приготовленный с мясом — по истине мужской салат. Он накормит любого обжору и насытит организм до отвала. Этот салат...
Такое сновидение означает основу жизни. Сонник пол толкует как знак жизненной ситуации, в которой ваша основа жизни может показывать...
Во сне приснилась крепкая и зеленая виноградная лоза, да еще и с пышными гроздьями ягод? В реале вас ждет бесконечное счастье во взаимной...