Химические свойства ненасыщенных карбоновых кислот. Химические свойства карбоновых кислот и методы получения


Все началось с уксуса, по крайней мере, открытие карбоновых кислот . Название объединяет органические соединения, содержащие карбоксильную группу COOH.

Важно расположение атомов именно в таком порядке, поскольку есть и другие кислородосодержащие соединения.

Уксусную из карбоновых открыли первой, но ее строение многие века оставалось тайной. Вещество знали, как продукт скисания вин.

Как соединение 2-ух атомов , 4-ех и 2-ух кислорода стала известна миру лишь в 18-ом столетии.

После, открыли целый ряд карбоновых . Ознакомимся с их классификацией, общими свойствами и областями применения.

Свойства карбоновых кислот

Отличаясь от другой органики наличием карбоксильных групп, карбоновые кислоты классифицируются по их числу.

Есть одно-, двух-, и многоосновные соединения. Одноосновные карбоновые кислоты выделяются связью между карбоксильной группой и углеводородным радикалом.

Соответственно, общая формула веществ группы: — C n H 2 n +1 COOH. Уксусная – одноосновная. Ее химическая запись: — CH 3 COOH. Еще проще строение соединения: — COCOOH.

К простейшим отнесена и с формулой C 2 H 5 COOH. У остальных соединений одноосновного ряда есть изомеры, то есть, разные варианты строения.

У муравьиной же, уксусной и пропионовой есть лишь один план строения.

Если у карбоновой кислоты формула с двумя карбоксильными группами, она может называться диосновной.

Общая запись веществ категории: — COOH-R-COOH. Как видно, карбоксильные группы располагаются по разные стороны линейной молекулы.

В многоосновных карбоксильных радикалов, как минимум три. Два стоят по краям молекулы, а остальные крепятся к центральным атомам углерода. Такова, к примеру, лимонная . Пространственная запись ее формулы: —

Подразделяют карбоновые соединения и по характеру углеводородного радикала. Химические связи между его атомами могут быть одинарными.

В этом случае перед нами предельные карбоновые кислоты. Наличие двойных связей указывает на непредельные вещества.

Формула непредельных карбоновых кислот может одновременно являться записью высших представителей класса.

Высшими называют соединения, в которых боле 6-ти атомов углерода. Соответственно, от 1-го до 5-ти атомов углерода – признак низших веществ.

Высшие карбоновые кислоты – это, к примеру, , , линоленовая, пальмитиновая и арихидоновая. В полследней 21 атом углерода, в остальных по 18.

Имея органическое происхождение, большинство карбоновых пахнут, хотя бы слегка. Однако, есть группа особенно ароматных.

В их состав входит бензольное ядро. То есть, группы являются производными бензола. Его формула: — C 6 H 6 .

У вещества сладковатый запах. Поэтому, карбоновые с бензольным ядром именуют ароматическими. Причем, обязательна прямая связь ядра и карбоксильных групп.

По физическому состоянию карбоновые бывают, как жидкими, так кристаллическими. Имеется в виду агрегатность веществ при обычных условиях.

Часть соединений растворима в воде, другая часть смешивается лишь с органикой. Нюансы химического поведения зависят от количества в молекулах карбоксильных групп.

Так, типичная реакция карбоновых кислот одноосновной категории– окрашивание лакмусовой в цвет.

Классикой, так же, считается взаимодействие с галогенами, тогда как дикарбоновые соединения могут образовывать эфиры карбоновых кислот. Они «рождаются» во взаимодействии со спиртами.

Карбоновая кислота с двумя основаниями всегда содержит метиленовую группу, то есть, двухвалентную CH 2 .

Ее наличие между карбоксильными группами повышает кислотность атомов водорода. Поэтому, возможна конденсация производных . Это еще одно объяснение появления эфиров.

Двухосновные соединения образуют, так же, соли карбоновых кислот . Они используются на производстве моющих средств, в частности, мыла.

Впрочем, о том, где пригождаются карбоновые кислоты и их соединения, поговорим отдельно.

Применение карбоновых кислот

В производстве мыла особенно важны стеариновая и пальмитиновая кислоты. То есть, используются высшие соединения.

Они делают мыльные брикеты твердыми и позволяют смешать фракции, расслаивающие без присутствия кислот.

Способность делать массы однородными пригождается и на производстве лекарств. Большинство связующих элементов в них – карбоновые кислоты.

Соответственно, применение реагентов внутрь, как и наружно, безопасно. Главное, знать предельную дозировку.

Превышение дозы, или концентрации кислот, ведет к разрушительным последствиям. Возможны химические ожоги, отравления.

Зато, едкость соединений наруку металлургам, мебельщикам, рестовраторам. Им карбоновые кислоты и смеси с ними помогают полировать и очищать неровные, заржавевшие поверхности.

Растворяя верхний слой металла, реагенты улучшают его внешний вид и эксплуатационные характеристики.

Химические карбоновые кислоты могут быть очищенными, или же, техническими. Для работы с металлами подойдут и последние.

Но, в качестве косметических и лекарственных средств применяют лишь высокоочищенные соединения. Такие нужны и в пищевой промышленности.

Около трети карбоновых кислот – официально зарегистрированные добавки, известные простым обывателям, как ешки.

На упаковках они отмечаются букврй Е и порядковым номером рядом с ней. Уксусная кислота, к примеру, пишется, как Е260.

Пищей карбоновые кислоты могут служить и для растений, входя в состав удобрений. Одновременно, можно создавать яды для вредоносных насекомых и сорняков.

Идея заимствована из природы. Ряд растений самостоятельно вырабатывают карбоновые кислоты, дабы близ них не было других трав, конкурирующих за почву и ее ресурсы. При этом, вырабатывающие яд растения, сами имеют к нему иммунитет.

Около трети карбоновых соединений используют в качестве протрав для тканей. Обработка необходима, чтобы материи равномерно окрашивались. С этой же целью реактивы применяют в кожевенной промышленности.

Добыча карбоновых кислот

Поскольку карбоновые кислоты биогенны, около 35% из них получают из природных продуктов. Но, химический синтез выгоднее.

Поэтому, при возможности переходят на него. Так, гиалуроновую кислоту, используемую для омоложения, долгое время добывали из пуповин младенцев и крупного рогатого скота.

Теперь же, соединение получают биохимическим способом, выращивая на пшеничном субстрате бактерий, беспрерывно дающих кислоту.

Получение карбоновых кислот чисто химическим путем – это окисление спиртов и альдегидов.

Под последним понятием скрываются спирты, лишенные водорода. Реакция протекает так: — СН 3 – СН 2 ОН → СН 3 – СОН → СН 3 – СООН.

Ряд карбоновых кислот получают гидролизом сложных эфиров. Получая в свой состав воду, они преобразуются в героинь .

Сформировать их можно и из моногалогенпроизводных. Кислоты из них получаются под действием цианида . Полупродукт реакции необходимо разложить водой.

От схемы производства, количества его ступеней, расходных материалов, во многом зависит стоимость конечных продуктов. Узнаем, каков ценник на карбоновые кислоты в их чистом виде.

Цена карбоновых кислот

Большинство карбоновых кислот продают большими объемами. Фасуют, обычно, по 25-35 килограммов. Жидкости разливают в канистры.

Порошки засыпают в полиэтиленовые пакеты, а стеариновую кислоту, вообще, заворачивают в . Ценник, обычно, выставляется за кило.

Так, 1000 граммов лимонной кислоты стоит в районе 80-ти рублей. Столько же берут за муравьиную и щавелевую.

Стоимость олеиновой – около 130-ти рублей за килограмм. Салициловая кислота оценивается уже в 300. Стеариновая кислота на 50-70 рублей дешевле.

Ряд карбоновых кислот оценивается в долларах, поскольку основные поставки ведутся из США и стран Евросоюза.

Оттуда поступает, к примеру, гиалуроновая кислота. За килограмм отдают уже не пару сотен рублей, а несколько сот баксов.

Отечественный продукт присутствует, но ему не доверяют, в первую очередь, клиенты красоты.

Они знают, что омоложение с помощью гиалуроновой кислоты – придумка американцев, практикуемая ими полвека.

Соответственно, велика практика производства препарата, который должен быть качественным, ведь попадает в кожу и организм.

Химические соединения, основу которых составляет одна и более групп СООН, получили определение карбоновые кислоты.

В основу соединений входит группа СООН, имеющая два составляющих – карбонил и гидроксил. Группу атомов СООН называют карбоксильной группой (карбоксилом). Взаимодействие элементов обеспечивается сочетанием двух атомов кислорода и атома углерода.

Строение карбоновых кислот

Углеводородный радикал в одноосновных предельных кислотах соединяется с одной группой СООН. Общая формула карбоновых кислот выглядит так: R-COOH.

Строение карбоновой группы влияет на химические свойства.

Номенклатура

В названии карбоновых соединений сначала нумеруют атом углерода группы COOH. Количество карбоксильных групп обозначают приставками ди-; три-; тетра-.

Например,СН3-СН2-СООН – формула пропановой кислоты.

У карбоновых соединений существуют и привычные слуху названия: муравьиная, уксусная, лимонная…Все это названия карбоновых кислот.

Названия солей карбоновых соединений получаются из названий углеводорода с добавлением суффикса “-оат” (СООК)2- этандиот калия.

Классификация карбоновых кислот

Карбоновые кислоты классификация .

По характеру углеводорода:

  • предельные;
  • непредельные;
  • ароматические.

По количеству групп СООН бывают:

  • одноосновные (уксусная кислота);
  • двуосновные (щавелевая кислота);
  • многоосновные (лимонная кислота).

Предельные карбоновые кислоты – соединения, в которых радикал соединен с одним карбонилом.

Классификация карбоновых кислот разделяет их еще и по строению радикала, с которым связан карбонил. По этому признаку соединения бывают алифатические и алициклические.

Физические свойства

Рассмотрим карбоновые кислоты физические свойства.

Карбоновые соединения имеют различное число атомов углерода. В зависимости от этого числа физические свойства этих соединений различаются.

Соединения, имеющие в составе от одного до трех углеродных атомов, считаются низшими. Это жидкости без цвета с резким запахом. Низшие соединения с легкостью растворяются в воде.

Соединения, имеющие в составе от четырех до девяти углеродных атомов – маслянистые жидкости, имеющие неприятный запах.

Соединения, имеющие в составе более девяти углеродных атомов, считаются высшими и физические свойства этих соединений таковы: они являются твердыми веществами , их невозможно растворить в воде.

Температура кипения и плавления зависит от молекулярной массы вещества. Чем больше молекулярная масса, тем выше температура кипения. Для закипания и плавления нужна более высокая температура, чем спиртам.

Существует несколько способов получения карбоновых кислот .

При химических реакциях проявляются следующие свойства:

Применение карбоновых кислот

Карбоновые соединения распространены в природе.Поэтому их применяют во многих областях: в промышленности (легкой и тяжелой), в медицине и сельском хозяйстве , а также в пищевой промышленности и косметологии.

Ароматические в большом количестве содержатся в ягодах и фруктах.

В медицине используют молочную, винную и аскорбиновую кислоту. Молочную применяют в качестве прижигания, а винную – как легкое слабительное. Аскорбиновая укрепляет иммунитет.

В косметологии используются фруктовые и ароматические. Благодаря им клетки быстрее обновляются. Аромат цитрусовых способен оказать тонизирующее и успокаивающее действие на организм. Бензойная встречается в бальзамах и эфирных маслах, она хорошо растворяется в спирте.

Высокомолекулярные непредельные соединения встречаются в диетологии. Олеиновая в этой области наиболее распространена.

Полиненасыщенные с двойными связями (линолевая и другие) обладают биологической активностью. Их еще называют активными жирными кислотами. Они участвуют в обмене веществ, влияют на зрительную функцию и иммунитет, а также на нервную систему. Отсутствие этих веществ в пище или недостаточное их употребление затормаживает рост животных и оказывает негативное влияние на их репродуктивную функцию.

Сорбиновая получается из ягод рябины. Она является отличным консервантом .

Акриловая имеет едкий запах. Она применяется для получения стекла и синтетических волокон.

На основе реакции этирификации происходит синтез жира, который применяют при изготовлении мыла, а также моющих средств.

Муравьиная используется в медицине , в пчеловодстве, а также в качестве консервантов.

Уксусная – жидкость без цвета с резким запахом; легко смешивается с водой. Ее широко применяют в пищевой промышленности в качестве приправы. Также она используется при консервации. Еще она обладает свойствами растворителя. Поэтому широко применяется в производстве лаков и красок, при крашении. На ее основе изготавливают сырье для борьбы с насекомыми и сорняками.

Стеариновая и пальмитиновая (высшие одноосновные соединения) являются твердыми веществами и не растворяются в воде. Но их соли применяются в производстве мыла. Они делают брикеты мыла твердыми.

Поскольку соединения способны придавать однородность массам, то они широко используются в изготовлении лекарств.

Растения и животные также вырабатывают карбоновые соединения. Поэтому употреблять их внутрь безопасно. Главное, – соблюдать дозировку. Превышение дозы и концентрации ведет к ожогам и отравлениям.

Едкость соединений приносит пользу в металлургии, а также реставраторам и мебельщикам. Смеси на их основе позволяют выравнивать поверхности и очищать ржавчину.

Сложные эфиры, получаемые при реакции этерификации, нашли свое применение в парфюмерии. Они используются также в качестве компонентов лаков и красок, растворителей. А также как аромадобавки.

Карбоновыми кислотами называют соединения, в которых содержится карбоксильная группа:

Карбоновые кислоты различают:

  • одноосновные карбоновые кислоты;
  • двухосновные (дикарбоновые) кислоты (2 группы СООН ).

В зависимости от строения карбоновые кислоты различают:

  • алифатические;
  • алициклические;
  • ароматические.

Примеры карбоновых кислот.

Получение карбоновых кислот.

1. Окисление первичных спиртов перманганатом калия и дихроматом калия:

2. Гибролиз галогензамещенных углеводородов, содержащих 3 атома галогена у одного атома углерода:

3. Получение карбоновых кислот из цианидов:

При нагревании нитрил гидролизуется с образованием ацетата аммония:

При подкисления которого выпадает кислота:

4. Использование реактивов Гриньяра:

5. Гидролиз сложных эфиров:

6. Гидролиз ангидридов кислот:

7. Специфические способы получения карбоновых кислот:

Муравьиная кислота получается при нагревании оксида углерода (II) с порошкообразным гидроксидом натрия под давлением:

Уксусную кислоту получают каталитическим окислением бутана кислородом воздуха:

Бензойную кислоту получают окислением монозамещенных гомологов раствором перманганата калия:

Реакция Каннициаро . Бензальдегид обрабатывают 40-60% раствором гидроксида натрия при комнатной температуре.

Химические свойства карбоновых кислот.

В водном растворе карбоновые кислоты диссоциируют:

Равновесие сдвинуто сильно влево, т.к. карбоновые кислоты являются слабыми.

Заместители влияют на кислотность вследствие индуктивного эффекта. Такие заместители оттягивают электронную плотность на себя и на них возникает отрицательный индуктивный эффект (-I). Оттягивание электронной плотности приводит к повышению кислотности кислоты. Электронодонорные заместители создают положительный индуктивный заряд.

1. Образование солей. Реагирование с основными оксидами, солями слабых кислот и активными металлами:

Карбоновые кислоты - слабые, т.к. минеральные кислоты вытесняют их из соответствующих солей:

2. Образование функциональных производных карбоновых кислот:

3. Сложные эфиры при нагревании кислоты со спиртом в присутствие серной кислоты - реакция этерификации:

4. Образование амидов, нитрилов:

3. Свойства кислот обуславливаются наличием углеводородного радикала. Если протекает реакция в присутствие красного фосфора, то образует следующий продукт:

4. Реакция присоединения.

8. Декарбоксилирование. Реакцию проводят сплавлением щелочи с солью щелочного металла карбоновой кислоты:

9. Двухосновная кислота легко отщепляет СО 2 при нагревании:

Дополнительные материалы по теме: Карбоновые кислоты.

Калькуляторы по химии

Химия онлайн на нашем сайте для решения задач и уравнений.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Управление Алтайского края по образованию и делам молодёжи

КГОУ СПО «Каменский педагогический колледж»

Карбоновые кислоты

(Реферат по химии)

Выполнил:

студент 212 группы Чебаков Д.С.

Проверил:

учитель химии Мерзлова С.А.

Камень-на-Оби

1.Определение Карбоновых кислот

2.Изомерия и номенклатура

3.Нахождение в природе

4.Получение

5.Физические свойства

6.Химические свойства

7.Применение

Список литературы

Определение карбоновых кислот

КАРБОНОВЫЕ КИСЛОТЫ - органические соединения, содержащие одну или несколько карбоксильных групп -СООН. Название происходит от лат. carbo - уголь и греч. oxys - кислый. По числу этих групп различают моно-, ди, три- и тетракарбоновые кислоты (большее число групп -СООН в одной молекуле встречается редко). Карбоновые кислоты могут быть алифатическими - с нормальной и разветвленной цепью, циклическими и ароматическими, предельными и непредельными, содержать атомы галогенов и различные функциональные группы: ОН (оксикислоты), NH2 (аминокислоты), СО (кетокислоты) и т.д. Многие карбоновые кислоты в свободном состоянии, а также в виде различных производных (солей, эфиров) широко распространены в природе и играют важнейшую роль в жизнедеятельности растений и животных.

Изомерия и номенклатура

Изомерия предельных одноосновных карбоновых кислот аналогична изомерии альдегидов. Чаще всего употребляется исторически сложившиеся названия кислот (муравьиная, уксусная и т.д.).По международной номенклатуре их образуют от названий соответствующих углеводородов с прибавлением окончания -овая и слова «Кислота», например: метановая кислота, этановая кислота.

Для карбоновых кислот характерна изомерия:

1.Углеродного скелета

СН3 - СН2 - СН2 - СН2 -СООН

СН2 - СН2 -СООН

карбоновая кислота органический химический

2.Радикала

СН3 - СН2 - СН2 - СН2 -СООН 3 метилэтановая

СН3 - СН2 - СН2 - СН2 -СООН 4 метилпентановая

3.Кратных связей

СН2 = СН - СН2 -СООН бутеновая кислота 3

СН2 - СН = СН2 -СООН бутеновая кислота 2

Нахождение в природе

В природных источниках в виде сложных эфиров содержится множество непредельных кислот. Высшие непредельные кислоты, как правило, содержат четное число атомов углерода и названы по природным источникам. Называя вновь выделенные кислоты, химики нередко дают волю фантазии. Так, название ближайшего гомолога акриловой кислоты, кротоновой СН3-СН=СН-СООН, происходит вовсе не от крота, а от растения Croton tiglium, из масла которого она была выделена. Очень важен синтетический изомер кротоновой кислоты - метакриловая кислота СН2=С(СН3)-СООН, из эфира которой (метилметакрилата), как и из метилакрилата, делают прозрачную пластмассу - оргстекло. Когда были открыты две изомерные кислоты, имеющие строение СН3-СН=С(СН3)-СООН, их назвали ангеликовой и тиглиновой. Ангеликовая кислота была выделена из ангеликового масла, полученного из ангеликового (дягильного) корня растения Angelica officinalis. А тиглиновая - из того же масла Croton tiglium, что и кротоновая кислота, только названа по второй части этого ботанического термина. Другой способ придумать новое название - переставить буквы в уже известном названии.

Арахиновая кислота встречается в масле земляного ореха - арахиса. По масштабам производства оно занимает одно из первых мест среди всех пищевых масел, но собственно арахиновой кислоты в нем мало - всего несколько процентов. Бегеновая кислота содержится в бегеновом масле, которое выжимают из крупных, как орех, семян распространенного в Индонезии растения семейства моринговых. Практически чистую лигноцериновую кислоту (в ее названии легко усмотреть латинские lignum - дерево, древесина и cera - воск) извлекают из смолы букового дерева. Раньше эту кислоту называли также карнаубовой, потому что ее довольно много в карнаубском воске, которыми покрыты листья бразильской восковой пальмы.

Жирные кислоты в составе масел и жиров добываются человеком в огромных количествах, измеряемых ежегодно миллионами тонн. Так что у химиков никогда не было недостатка в природных жирных кислотах для их исследования.

Муравьиная кислота стала известна в 17 в., когда ее обнаружили в едких выделениях рыжих муравьев. Большинство других кислот, имеющих свои «собственные» исторически сложившиеся названия, были получены главным образом в 19 в. и названы по природному источнику, в котором они содержатся в значительных количествах или были впервые обнаружены. Например, масляная кислота есть в маслах, в том числе и в обычном сливочном масле - только не в свободном состоянии, а в виде сложного эфира с глицерином. Свободная масляная кислота, как и все карбоновые кислоты, с небольшим числом атомов углерода, обладает резким запахом, когда масло портится (прогоркает), масляная и другие кислоты выделяются в свободном состоянии и придают ему неприятный запах и вкус.

В названиях рассмотренных трех кислот используются русские корни. Для производных этих кислот (солей, сложных эфиров и др.) принято использовать латинские корни: формиат - для муравьиной кислоты (лат. formica - муравей), ацетат - для уксусной (лат. acetum - уксус), бутират - для масляной (греч. butyron - масло); эти названия, в том числе и для самих кислот, приняты и в западноевропейских языках.

Другие карбоновые кислоты встречаются в природе в составе сложных эфиров с глицерином и другими многоатомными спиртами - в виде жиров, масел, восков и редко - в свободном состоянии.

Валериановая кислота содержится в валериановом корне. В названиях трех последующих четных кислот (капроновая, каприловая и каприновая) есть общий корень (Capra на латыни - коза), эти кислоты, действительно, содержатся в жире козьего молока (как, впрочем, и коровьего), а в свободном состоянии «пахнут козлом». Содержание этих кислот в молочных жирах не очень велико - от 7 до 14% от суммы всех жирных кислот.

Пеларгоновая кислота содержится в летучем масле пеларгонии розовой и других растений семейства гераниевых. Лауриновая кислота (в старых книгах ее называли лавровой) содержится в больших количествах в лавровом масле (до 45%). Миристиновая кислота преобладает в масле растений семейства миристиковых, например, в ароматных семенах мускатного дерева - мускатном орехе.

Пальмитиновую кислоту легко выделить из пальмового масла, выжимаемого из ядер кокосового ореха (копры). Это масло почти целиком состоит из глицерида пальмитиновой кислоты. Название стеариновой кислоты происходит от греч. stear - жир, сало. Вместе с пальмитиновой она относится к наиболее важным жирным кислотам и составляет главную часть большинства растительных и животных жиров. Из смеси этих кислот (стеарина) раньше изготовляли свечи.

Получение

В лаборатории карбоновые кислоты, как и не органические, можно получить из их солей, действуя на них серной кислотой при нагревании:

В промышленности карбоновые кислоты получают различными способами.

Общий способ получения карбоновых кислот - окисление углеводородов кислородом воздуха. Реакцию проводят как в газовой фазе при повышенных давлении и температуре без катализаторов, так и в растворах. При этом происходит крекинг углеродных цепей, так что полученные таким способом кислоты содержат всегда меньше атомов углерода, чем исходные углеводороды. Например, уксусную кислоту получают окислением Н-бутана в растворе уксусной кислоты:

Mn, Co, 6-8 MПа

2CH3 - CH2 - CH2 - CH3 + 5O2 4СH3COOH+2H2O

Физические свойства

Низшие карбоновые кислоты -- жидкости с острым запахом, хорошо растворимые в воде. С повышением относительной молекулярной массы растворимость кислот в воде уменьшается, а температура кипения повышается. Высшие кислоты, начиная с пеларгоновой (н-нонановой) СН3-(СН2)7-СООН, -- твердые вещества, без запаха, нерастворимые в воде. Низшие карбоновые кислоты в безводном виде и в виде концентрированных растворов раздражают кожу и вызывают ожоги, особенно муравьиная кислота и уксусная кислота.

Химические свойства

Общие свойства карбоновых кислот аналогичны соответствующим свойствам неорганических кислот.

Карбоновые кислоты обладают и некоторыми специфическими свойствами, обусловленными наличием в их молекулах радикалов. Так, например, уксусная кислота реагирует с хлором:

монохлоруксусная кислота

Муравьиная кислота по химическим свойствам несколько отличается от других карбоновых кислот.

1.Из одноосновных карбоновых кислот муравьиная кислота является самой сильной кислотой.

2. Из-за особенностей строения молекул муравьиная кислота подобна альдегидам легко окисляется (реакция «серебряного зеркала»):

угольная кислота.

3. При нагревании с концентрированной серной кислотой муравьиная кислота отщепляет воду и образуется оксид углерода (II):

Эта реакция иногда используется для получения оксида углерода (II) в лаборатории.

Как уже было отмечено, самой сильной из одноосновных карбоновых кислот является муравьиная кислота.

Уксусная кислота значительно слабее. Следовательно, радикал метил СН3 - (и другие радикалы) влияет на карбоксильную группу. В результате этого связь между атомами водорода и кислорода в карбоксильной группе становится менее полярной и отщепление иона водорода затрудняется. В радикалах карбоновых кислот атомы водорода могут замещаться галогенами. При этом замещение легче происходит в углеводородном звене, которое находится ближе к карбоксильной группе. Следовательно, карбоксильная группа действует на углеводородный радикал, то есть их влияние взаимно.

Применение

Муравьиная кислота применяется в промышленности в качестве сильного восстановителя. Её 1,25% - ный раствор в спирте (муравьиный спирт) применяется в медицине. Наибольшее значение имеет уксусная кислота она необходима для синтеза красителей (например индиго), медикаментов (например, аспирина),сложных эфиров, уксусного ангидрида, монохлоруксусной кислоты и т.д. Большие её количества расходуются для производства ацетатного волокна, не горючей кинопленки, органического стекла, пропускающего УФ лучи.

Широко используются её соли - ацетаты. Ацетат свинца (II) применяется для изготовления свинцовых белил и свинцовой примочки в медицине, ацетаты железа (III) и алюминия - в качестве протрав при крошении тканей, ацетат меди (II) - для борьбы с вредителями растений. 3-9%-ный водный раствор уксусной кислоты - уксус - вкусовое и консервирующее средство. Некоторые соединения, при получении которых используется уксусная кислота, например натриевая соль 2,4-дихлорфеноксиуксусной кислоты, являются гербицидами - средством для борьбы с сорняками. Натриевые и калевые соли высших карбоновых кислот - основные составные части мыла.

Сложные эфиры муравьиной кислоты используются в качестве растворителей и душистых веществ

Список литературы

Г.Е. Рудзитис, Ф.Г. Фельдман Химия: Органическая химия: Учебник для 10 кл. общеобразовательных учреждений. - 5-е изд. - М.: Просвещение, 1998. - 160 с.

О.С. Габриелян Химия. 10 класс: Учебник для общеобразовательных учреждений / О.С.Габриелян.-11-е изд., испр-М. : Дрофа, 2006.- 267, с.

Л.С. Гузей Химия. 11 класс: Учебник для общеобразовательных учреждений / Р.П. Суровцева, Г.Г. Лысова- 7-е изд., стереотип. М. : Дрофа, 2006. - 223, с.

Размещено на Allbest.ru

Подобные документы

    Карбоновые кислоты-органические соединения, содержащие карбоксильную группу (карбоксил). Номенклатура и изомерия. Физические свойства. Химические свойства. Уксусная (метанкарбоновая, этановая) кислота СН3-СООН. Применение кислот в прмышленности.

    реферат , добавлен 16.12.2007

    Одноосновные карбоновые кислоты. Общие способы получения. Двухосновные кислоты, химические свойства. Пиролиз щавелевой и малоновой кислот. Двухосновные непредельные кислоты. Окисление оксикислот. Пиролиз винной кислоты. Сложные эфиры. Получение жиров.

    учебное пособие , добавлен 05.02.2009

    Объединение соединений с функциональной группой карбоксила в класс карбоновых кислот. Совокупность химических свойств, часть из которых имеет аналогию со свойствами спиртов и оксосоединений. Гомологический ряд, номенклатура и получение карбоновых кислот.

    контрольная работа , добавлен 05.08.2013

    Ацильные соединения - производные карбоновых кислот, содержащие ацильную группу. Свойства кислот обусловлены наличием в них карбоксильной группы, состоящей из гидроксильной и карбонильной групп. Способы получения и реакции ангидридов карбоновых кислот.

    реферат , добавлен 03.02.2009

    Карбоновые кислоты - более сильные кислоты, чем спирты. Ковалентный характер молекул и равновесие диссоциации. Формулы карбоновых кислот. Реакции с металлами, их основными гидроксидами и спиртами. Краткая характеристика физических свойств кислот.

    презентация , добавлен 06.05.2011

    Изучение физических и химических свойств карбоновых кислот. Анализ реакции нуклеофильного замещения в ряду производных. Характеристика общей схемы механизма в присутствии катализатора. Обзор циклического, ароматического и гетероциклического ряда кислот.

    реферат , добавлен 19.12.2011

    Ознакомление с историческими фактами открытия и получения фосфорной кислоты. Рассмотрение основных физических и химических свойств фосфорной кислоты. Получение экстракционной фосфорной кислоты в лабораторных условиях, ее значение и примеры применения.

    реферат , добавлен 27.08.2014

    Понятие термина ароматические карбоновые кислоты. Серная кислота: химические показатели, правила использования. Влияние температуры на реакцию нитрования и ее лабораторные соединения. Способы получения одноосновных карбоновых кислот ароматического ряда.

    курсовая работа , добавлен 05.12.2008

    Структурная, химическая формула серной кислоты. Сырьё и основные стадии получения серной кислоты. Схемы производства серной кислоты. Реакции по производству серной кислоты из минерала пирита на катализаторе. Получение серной кислоты из железного купороса.

    презентация , добавлен 27.04.2015

    Исследование мезогенных свойств жидкокристаллических полиэфиров, содержащих в качестве центрального ядра остаток камфорной кислоты. Изучение хироптических свойств сополиэфиров VIII в растворе, влияние растворителя. Получение оптически активных полимеров.

1. Классификация карбоновых кислот.

2. Номенклатура, получение.

3. Изомерия, строение.

4. Монокарбоновые кислоты (предельные, непредельные, ароматические).

5. Дикарбоновые кислоты.

6. Производные карбоновых кислот.

Производные углеводородов, содержащие карбоксильную группу -СООН,называются карбоновыми кислотами.

Карбоновые кислоты классифицируют по двум структурным признакам:

а) по природе радикала, различают - алифатические R(CООН)n (предельные, непредельные) и ароматические кислоты Аr(СООН)n;

б) по числу карбоксильных групп, различают - монокарбоновые (n =1), ди- и поликарбоновые (n ≥ 2) кислоты.

Номенклатура. По номенклатуре ИЮПАК названия кислот образуют от названия углеводорода, добавляя окончание -овая кислота, например, СН 3 СООН - этановая кислота. Широко распространены тривиальные названия кислот: уксусная, масляная, олеиновая, винная, щавелевая и т.д.

Получение.

а) Окисление алкенов, алкинов, первичных спиртов и альдегидов (см. «Химические свойства» соответствующих классов соединений):

R-СН = СН-СН 3 + [О] → R-СООН + СН 3 -СООН

R-СН 2 -ОН + [О] → R-СН=О + [О] → R-СООН

спирт альдегид кислота

Окислители - КМnО 4 , К 2 Сr 2 О 7 в кислой среде.

б) Окисление алканов: R-CH 2 -CH 2 -R" + [O] → R-COOH + R"-COOH + H 2 O Окисление осуществляют в присутствии катализаторов - солей кобальта или марганца.

в) Окисление алкилбензолов (см. «Химические свойства ароматических углеводородов»). г) Гидролиз нитрилов, производных карбоновых кислот в кислой или щелочной среде: R-C≡N + 2H 2 O + HСl → R-COOH + NH 4 Сl

R-C≡N + H 2 O + NaOH → R-COONa + NH 3

X: -OR, -Наl, -OCOR, -NH 2.

д) Металлорганический синтез:

Строение. Атомы углерода и кислорода карбоксильной группы находятся в состоянии sр 2 -гибридизации. σ- связь С-О образована перекрыванием sр 2 -sр 2 -гибридизованных орбиталей, σ- связь О-Н - перекрыванием sр 2 - s- орбиталей, π- связь С-О - перекрыванием негибридизованных р-р-орбиталей. Карбоксильная группа представляет собой плоскую р,π- сопряженную систему:

В результате сопряжения связь С-О становится короче по сравнению с аналогичной связью в спиртах, связь С=О - длиннее по сравнению с аналогичной связью в карбонильных соединениях, т.е. происходит заметное выравнивание длин связей в карбоксильной группе.

Межмолекулярное взаимодействие карбоновых кислот характеризуется сильными водородными связями, в результате чего образуются линейные ассоциаты и циклические димеры:

и

Водородная связь в карбоновых кислотах более прочная, чем в спиртах. Это обусловливает более высокие растворимость в воде, температуры кипения и плавления карбоновых кислот по сравнению со спиртами близкой молекулярной массы.

Взаимное влияние карбонильной и гидроксильной групп в составе карбоксильной группы обусловливает химические свойства, отличные от свойств карбонильных соединений и спиртов. Реакции с участием карбоксильной группы протекают по следующим основным направлениям: кислотно-основное взаимодействие, нуклеофильное замещение, декарбоксилирование.

Химические свойства карбоновых кислот рассмотрены далее на примере предельных монокарбоновых кислот.

Монокарбоновые кислоты (предельные, непредельные, ароматические кислоты).

Общая молекулярная формула предельных монокарбоновых кислот

Сn Н 2 nО 2 .

Таблица 4.

Гомологический ряд предельных монокарбоновых кислот

Т пл., С

Т кип. , С

Ацильный остаток - кислотный остаток

Муравьиная

(метановая)

формил - формиаты

Уксусная

(этановая)

ацетил - ацетаты

пропионовая

(пропановая)

CH 3- CH 2- COOH

пропионил - пропионаты

масляная

(бутановая)

CH 3- (CH 2) 2- COOH

бутирил - бутираты

валериановая

CH 3- (CH 2) 3- COOH

валерил - валераты

капроновая

CH 3- (CH 2) 4- COOH

капроноил

лауриновая

CH 3- (CH 2) 10- COOH

пальмитиновая

CH 3- (CH 2) 14- COOH

пальмитил-пальмитаты

стеариновая

CH 3- (CH 2) 16- COOH

стеарил - стеараты

В таблице приведены названия ацильных (R-СО-) и кислотных (R-СОО-) остатков некоторых монокарбоновых кислот предельного ряда.

Изомерия. Для предельных монокарбоновых кислот характерна структурная изомерия (различное строение углеродной цепи и различное расположение функциональной группы). Например, молекулярной формуле С 4 Н 8 О 2 соответствуют изомеры: СН 3 -СН 2 -СН 2 -СООН (бутановая кислота), (СН 3) 2 СН-СООН (2-метилпропановая или изобутановая кислота), СН 3 -СН 2 -СООСН 3 (метилпропаноат) (подробно см. раздел «Изомерия»).

Физические свойства. Кислоты с числом атомов углерода от 1 до 9 - бесцветные жидкости с неприятными запахами, с С≥ 10 - твердые вещества без запаха. Кислоты с числом атомов углерода от 1 до 3 хорошо растворяются в воде, с С≥ 4 - не растворимые в воде вещества, но хорошо растворимые в органических растворителях (спирт, эфир).

Химические свойства.

а) кислотные свойства

Водные растворы карбоновых кислот имеют кислую реакцию:

кислота карбоксилат-ион

Делокализация электронной плотности (р,π- сопряжение) в карбоксилат-ионе приводит к полному выравниванию порядков длин обеих связей С-О, увеличению его стабильности по сравнению с алкоголят- и фенолят-ионами. Поэтому карбоновые кислоты по силе превосходят спирты и фенолы, угольную кислоту, но уступают таким минеральным кислотам, как соляная, серная, азотная и фосфорная.

На силу карбоновых кислот существенное влияние оказывает природа радикала при карбоксильной группе: электронодонорные группы дестабилизируют карбоксилат-ион и, следовательно, уменьшают кислотные свойства, электроноакцепторные - стабилизируют карбоксилат-ион и увеличивают кислотные свойства.

В гомологическом ряду предельных монокарбоновых кислот с увеличением числа атомов углерода в составе кислоты кислотные свойства понижаются. Самая сильная кислота - муравьиная.

Карбоновые кислоты образуют соли при взаимодействии с активными металлами, оксидами металлов, основаниями, солями. Например, СН 3 -СООН + Nа 2 СО 3 → СН 3 -СООNа + СО 2 + Н 2 О

Соли низших карбоновых кислот хорошо растворимы в воде, высших - растворимы только натриевые и калиевые соли. Соли карбоновых кислот и щелочных металлов подвергаются гидролизу и их водные растворы имеют щелочную среду:

R-COO - Na + + HOH ↔ R-COOH + NaOH

Соли карбоновых кислот используют для получения производных карбоновых кислот, углеводородов, поверхностно-активных веществ.

Огромное значение в народном хозяйстве имеют натриевые и калиевые соли высших жирных кислот - мыла. Обычное твердое мыло представляет собой смесь натриевых солей различных кислот, главным образом пальмитиновой и стеариновой: С 15 Н 31 СООNa (пальмитат натрия) и С 17 Н 35 СООNa (стеарат натрия). Калиевые мыла - жидкие.

Мыло в глубокой древности получали из жира и буковой золы. В эпоху Возраждения вернулись к забытому ремеслу, рецепты держали в секрете. Сейчас получают мыла главным образом исходя из растительных и животных жиров.

Мыла являются поверхностно-активными веществами (ПАВ), химическим гибридом, состоящим из гидрофильного (карбоксилат-ион) и гидрофобного (страх, боязнь) конца (углеводородный радикал). Мыла резко снижают поверхностное натяжение воды, вызывают смачивание частиц или поверхностей, обладающих водоотталкивающим действием, способствуют образованию устойчивой пены.

В жесткой воде моющая способность мыла резко снижается, растворимые натриевые или калиевые соли высших жирных кислот вступают в обменную реакцию с имеющимися в жесткой воде растворимыми кислыми карбонатами щелочноземельных металлов, главным образом кальция:

2C 15 H 31 COONa + Ca(HCO 3) 2 → (C 15 H 31 COO) 2 Ca + 2NaHCO 3

Получающиеся при этом нерастворимые кальциевые соли высших жирных кислот образуют осадки.

Огромные количества мыла применяют в быту для гигиенических целей, для стирки и т.д., а также в различных отраслях промышленности, особенно для мытья шерсти, тканей и других текстильных материалов.

б) нуклеофильное замещение - S N (образование функциональных производных карбоновых кислот)

Основной тип реакций карбоновых кислот - нуклеофильное замещение у sр 2 -гибридизованного атома углерода карбоксильной группы, в результате которого гидроксильная группа замещается на другой нуклеофил. Вследствие р,π-с опряжения в карбоксильной группе подвижность гидроксильной группы по сравнению со спиртами значительно меньше, поэтому реакции нуклеофильного замещения проводят в присутствии катализатора - минеральной кислоты или щелочи.

Реакции сопровождаются образованием функциональных производных карбоновых кислот - галогенангидридов (1), ангидридов (2), сложных эфиров (3), амидов (4):

в) д екарбоксилирование

Декарбоксилирование - это удаление карбоксильной группы в виде СО 2 . В зависимости от условий реакции образуются соединения разных классов. Электроноакцепторые группы в составе радикала при карбоксильной группе облегчают протекание реакций этого типа.

Примеры реакций декарбоксилирования:

1) термический распад натриевых или калиевых солей в присутствии натронной извести

R-COONa + NaOH → R-Н + Na 2 СО 3

2) термический распад кальциевых или бариевых солей

R-COO-Са-ООС-R → R-СО-R + СаСО 3

3) электролиз натриевых или калиевых солей (синтез Кольбе)

2R-COONa + 2НОН → R-R + 2NaОН +2CO 2 + Н 2

г) замещение атомов водорода у α-углеродного атома

Атом галогена в α -галогензамещенных кислотах легко замещается под действием нуклеофильных реагентов. Поэтому α-галогензамещенные кислоты являются исходными веществами в синтезе широкого круга замещенных кислот, в том числе α-амино- и α-гидроксикислот:

пропионовая к-та α-хлорпропионовая к-та

Врезультате влияния атома галогена на карбоксильную группу галогенпроизводные кислоты (например, трихлоруксусная кислота) являются во много раз более сильными кислотами и приближаются в этом отношении к сильным неорганическим кислотам.

д) специфические свойства муравьиной кислоты

В составе муравьиной кислоты наряду с карбоксильной группой можно выделить карбонильную группу, поэтому муравьиная кислота проявляет свойства как карбоновых кислот, так и альдегидов:

1. окисление

НСООН + [O]→ СО 2 + Н 2 О

окислители: Сu(ОН) 2 , ОН (реакция «серебряного зеркала»)

2. дегидратация

НСООН + Н 2 SО 4 (конц.) →СО + Н 2 О

Нахождение в природе и применение кислот:

а) муравьиная кислота - бесцветная жидкость с острым запахом, смешивается с водой. Впервые выделена в ХVII веке из красных муравьев перегонкой с водяным паром. В природе свободная муравьиная кислота встречается в выделениях муравьев, в соке крапивы, в поте животных. В промышленности муравьиную кислоту получают, пропуская оксид углерода через нагретую щелочь:

NaOH + CO → H-COONa

H-COONa + H 2 SO 4 → H-COOH + NaHSO 4

Применяют муравьиную кислоту при крашении тканей, в качестве восстановителя, в различных органических синтезах.

б) уксусная кислота

Безводная уксусная кислота (ледяная уксусная кислота) - бесцветная жидкость с характерным острым запахом и кислым вкусом, замерзает при температуре +16 0 С, образуя кристаллическую массу, напоминающую лед. 70-80 % водный раствор кислоты называется уксусной эссенцией.

Она широко распространена в природе, содержится в выделениях животных, в растительных организмах, образуется в результате процессов брожения и гниения в кислом молоке, в сыре, при скисании вина, прогаркании масла и т.п. Используют в пищевой промышленности в качестве вкусовой приправы и консерванта, широко - в производстве искусственных волокон, растворителей, в получении лекарственных препаратов.

в) масляная кислота - бесцветная жидкость, растворы кислоты имеют неприятный запах старого сливочного масла и пота. Встречается в природе в виде сложных эфиров, эфиры глицерина и масляной кислоты входят в состав жиров и сливочного масла. Используют в органическом синтезе для получения ароматных сложных эфиров.

в) изовалериановая кислота - бесцветная жидкость с острым запахом, в разбавленных растворах имеет запах валерианы. Встречается в корнях валерианы, используют для получения лекарственных веществ и эссенций.

г) пальмитиновая, стеариновая кислоты

Это твердые вещества со слабыми запахами, плохо растворимые в воде. Широко распространены в природе, в виде сложных эфиров с глицерином входят в состав жиров. Используют для получения свечей, поверхностно-активных веществ.

Непредельные кислоты

Непредельные кислоты - карбоновые кислоты, содержащие в углеводородном радикале кратные связи (двойные или тройные). Наибольшее значение имеют непредельные моно- и дикарбоновые кислоты с двойными связями.

Номенклатура и изомерия.

Названия для непредельных кислот составляют по номенклатуре ИЮПАК, однако чаще всего применяют тривиальные названия:

СH 2 =CH-CОOH - 2-пропеновая или акриловая кислота

CH 3 -CH=CH-CОOH - 2-бутеновая или кротоновая кислота

СH 2 =C(СH 3)-CОOH - 2-метилпропеновая или метакриловая кислота

CH 2 =CH-CH 2 -CОOH - 3-бутеновая или винилуксусная кислота

CH 3 -(СН 2) 7 -CH=CH-(СН 2) 7 -CОOH - олеиновая кислота

СН 3 -(СН 2) 4 -CH=CH-СН 2 -CH=CH-(СН 2) 7 -CОOH - линолевая кислота

СН 3 -СН 2 -CH=CH-СН 2 -CH=CH-СН 2 -CH=CH-(СН 2) 7 -CОOH- линоленовая кислота.

Структурная изомерия непредельных кислот обусловлена изомерией углеродного скелета (например,кротоновая и метакриловая кислоты) и изомерией положения двойной связи (например, кротоновая и винилуксусная кислоты).

Непредельным кислотам с двойной связью, так же как и этиленовым углеводородам, свойственна и геометрическая или цис-транс изомерия.

Химические свойства. По химическим свойствам непредельные кислоты аналогичны моно- и дикарбоновым кислотам, но имеют ряд отличительных особенностей, обусловленных наличием в молекуле кратных связей и карбоксильной группы и их взаимным влиянием.

Непредельные кислоты, особенно содержащие кратную связь в α-положении к карбоксильной группе, являются более сильными кислотами, чем предельные. Так, непредельная акриловая кислота (К=5,6*10 -5) в четыре раза сильнее пропионовой кислоты (К=1,34*10 -5).

Непредельные кислоты вступают во все реакции по месту кратных связей, свойственные непредельным углеводородам.

а) Э лектрофильной присоединение:

1. галогенирование

β CH 2 = α CH-COOH + Br 2 → СH 2 Br- CHBr-COOH

пропеновая кислота α,β-дибромпропионовая к-та

Это качественная реакция на непредельные кислоты, по количеству израсходованного галогена (брома или иода) можно определить количество кратных связей.

2. гидрогалогенирование

α CH 2 δ+ = β CH δ- →COOH+ Н δ+ - Br δ- → СH 2 Br-CH 2 -COOH

У α,β-непредельных кислот реакция присоединения протекает против правила Марковникова.

б) Г идрирование

В присутствии катализаторов (Pt, Ni) водород присоединяется по месту двойной связи и непредельные кислоты переходят в предельные:

CH 2 =CH-COOH + Н 2 → CH 3 -CH 2 -COOH

акриловая кислота пропионовая кислота

Процесс гидрирования (гидрогенизация) имеет большое практическое значение, особенно для превращения высших непредельных жирных кислот в предельные; на этом основано превращение жидких масел в твердые жиры.

в) О кисление

В условиях реакции Вагнера (см. «Алкены») непредельные кислоты окисляются до дигидроксикислот, при энергичном окислении - до карбоновых кислот.

а) акриловая CH 2 =CH-COOH и метакриловая CH 2 =C(СH 3 )-COOH кислоты - бесцветные жидкости с острыми запахами. Кислоты и их сложные (метиловые) эфиры легко полимеризуются, на этом основано их использование в промышленности полимерных материалов (органического стекла).

Нитрил акриловой кислоты - акрилонитрил CH 2 =CH-C≡N применяют в производстве синтетического каучука и высокомолекулярной смолы полиакрилонитрила (ПАН), из которой получают синтетическое волокно нитрон (или орлон) - один из видов искусственной шерсти.

б) высшие непредельные кислоты

-цис -олеиновая кислота в виде эфира с глицерином входит в состав почти всех жиров животного и растительного происхождения, особенно высоко содержание олеиновой кислоты в оливковом («прованском») масле - до 80 % , калиевые и натриевые соли олеиновой кислоты являются мылами;

-цис, цис -линолевая и цис, цис- линоленовая кислоты в виде эфира с глицерином входят в состав многих растительных масел, например в соевое, конопляное, льняное масло. Линолевая и линоленовая кислоты называются незаменимыми кислотами, поскольку не синтезируются в организме человека. Именно эти кислоты обладают наибольшей биологической активностью: они участвуют в переносе и обмене холестерина, синтезе простагландинов и других жизненно важных веществ, поддерживают структуру клеточных мембран, необходимы для работы зрительного аппарата и нервной системы, влияют на иммунитет. Отсутствие в пище этих кислот тормозит рост животных, угнетает их репродуктивную функцию, вызывает различные заболевания.

Сложные эфиры кислот используют в производстве лаков и красок (высыхающие масла).

Ароматические монокарбоновые кислоты

Кислоты являются бесцветными кристаллическими веществами, некоторые из них имеют слабый приятный запах. Для них характерна сопряженная (π, π) система:

Важнейшие представители:

бензойная кислота

фенилуксусная кислота

транс -коричная кислота

Ароматические кислоты являются более сильными кислотами, чем предельные кислоты (кроме муравьиной кислоты). Для кислот этого типа характерны все реакции насыщенных карбоновых кислот в карбоксильной группе и реакции электрофильного замещения в бензольном кольце (карбоксильная группа - заместитель 2 рода, м -ориентант).

Нахождение в природе и применение кислот:

Ароматические кислоты используют для получения красителей, душистых и лекарственных веществ; сложные эфиры кислот содержатся в эфирных маслах, смолах и бальзамах. Бензойная кислота и ее натриевая соль содержатся в плодах калины, рябины, бруснике, клюкве, придают им горьковатый вкус, обладают бактерицидными свойствами, широко используются в консервировании пищевых продуктов.

Амид о-сульфобензойной кислоты называют сахарином, он слаще сахара в 400 раз.

Производные карбоновых кислот.

Общая формула производных карбоновых кислот:

Где Х: - Hal, -ООС-R, -OR, -NH 2.

Для производных карбоновых кислот наиболее характерны реакции нуклеофильного замещения (S N). Поскольку продукты этих реакций содержат ацильную группу R-С=О, реакции называют ацилированием, а карбоновые кислоты и их производные - ацилирующими реагентами.

В общем виде процесс ацилирования может быть представлен следующей схемой:

По ацилирующей способности производные карбоновых кислот располагаются в следующий ряд:

соли < амиды < сложные эфиры <ангидриды <галогенангидриды

В этом ряду предыдущие члены могут быть получены из последующих ацилированием соответствующего нуклеофила (например, спирта, аммиака и т.д.). Все функциональные производные могут быть получены непосредственно из кислот и превращаются в них при гидролизе.

Амиды, в отличии от других производных карбоновых кислот, образуют межмолекулярные водородные связи и являются твердыми веществами (амид муравьиной кислоты HCONH 2 - жидкость).

Сложные эфиры

Методы получения. Основной способ получения сложных эфиров - реакции нуклеофильного замещения:

а) реакция этерификации R-СООН + R О -Н ↔ R-СО-ОR + Н 2 О

Реакцию проводят в присутствии катализатора - минеральной кислоты. Реакции этерификации обратимы. Для смешения равновесия в сторону образования сложного эфира используют избыток одного из реагентов или удаление продуктов из сферы реакции.

б) ацилирование спиртов галогенангидридами и ангидридами

в) из солей карбоновых кислот и алкилгалогенидов

R-COONa + RCl → RCOOR + NaCl Номенклатура. По номенклатуре ИЮПАК название сложных эфиров составляют следующим образом:

СН 3 -СН 2 -СН 2 О-ОСН 3

углеводород радикал

радикал+углеводород+оат - метилбутаноат.

Если указывают тривиальные названия ацильных остатков, то название данного эфира - метилбутират. Эфиры можно называть по радикально-функциональной номенклатуре - метиловый эфир масляной кислоты .

Физические свойства. Сложные эфиры представляют собой бесцветные жидкости, нерастворимые в воде и обладающие по сравнению с исходными кислотами и спиртами низкими температурами кипения и плавления, что обусловлено отсутствием в эфирах межмолекулярных водородных связей. Многие сложные эфиры обладают приятным запахом, часто запахом ягод или фруктов (фруктовые эссенции).

Химические свойства . Для сложных эфиров наиболее характерны реакции нуклеофильного замещения (S N), протекающие в присутствии кислотного или основного катализатора. Важнейшими S N -реакциями являются гидролиз, аммонолиз и переэтерификация.

Кислотный гидролиз сложных эфиров - реакция обратимая, щелочной гидролиз протекает необратимо.

RCOOR + Н 2 О(Н +) ↔ RCOOН + ROH

RCOOR + NaOH → RCOO - Na + + ROH

Жиры

Жиры (триглицериды) - сложные эфиры, образованные глицерином и высшими предельными и непредельными кислотами.

Из жиров выделено несколько десятков разнообразных предельных и непредельных кислот; почти все они содержат неразветвленные цепи углеродных атомов, число которых, как правило, четное и колеблется от 4 до 26. Однако именно высшие кислоты, преимущественно с 16 и 18 углеродными атомами - главная составная часть всех жиров. Из предельных высших жирных кислот наиболее важны пальмитиновая С 15 Н 31 СООН и стеариновая С 17 Н 35 СООН, из непредельных - олеиновая С 17 Н 33 СООН (с одной двойной связью), линолевая С 17 Н 31 СООН (с двумя двойными связями) и линоленовая С 17 Н 29 СООН (с тремя двойными связями). Непредельные кислоты, содержащие в радикале фрагмент (-СН 2 -СН=СН-), называются незаменимыми.

Простые триглицериды содержат остатки одинаковых, смешанные - разных жирных кислот. Названия составляют на основе названий ацильных остатков, входящих в их состав жирных кислот:

трипальмитин диолеостеарин

Значение жиров исключительно велико. Прежде всего они - важнейшая составная часть пищи человека и животных наряду с углеводами и белковыми веществами. Наибольшей пищевой ценностью обладают растительные масла, которые наряду с незаменимыми жирными кислотами содержат необходимые для организма фосфолипиды, витамины, полезные фитостерины (предшественники витамина D). Суточная потребность взрослого человека в жирах 80-100г.

Жиры практически не растворимы в воде, но хорошо растворимы в спирте, эфире и других органических растворителях. Температура плавления жиров зависит от того, какие кислоты входят в их состав. Жиры, содержащие преимущественно остатки предельных кислот (животные жиры - говяжье, баранье или свиное сало), имеют наиболее высокие Т пл. и представляют собой твердые или мазеобразные вещества. Жиры, содержащие преимущественно остатки непредельных кислот (растительные масла - подсолнечное, оливковое, льняное и т.д.), жидкости с более низкими температурами плавления.

Химические свойства триглицеридов определяются наличием сложноэфирной связи и ненасыщенностью:

а) гидрогенизация (гидрирование) жиров

Присоединение водорода по месту двойных связей в остатках кислот ведут в присутствии катализатора - мелкораздробленного металлического никеля при 160-240 0 С и давлении до 3 атм. При этом жидкие жиры и масла превращаются в твердые насыщенные жиры - саломас, который широко применяют в производстве маргарина, мыла, глицерина.

б) гидролиз жиров

При щелочном гидролизе (омылении) жиров образуются соли жирных кислот (мыла) и глицерин, при кислотном - жирные кислоты и глицерин.

в) присоединение и окисление

Трилглицериды, содержащие остатки ненасыщенных жирных кислот, вступают в реакции присоединения по двойной связи (бромирование, иодирование) и окисления перманганатом калия. Обе реакции позволяют определить степень ненасыщенности жиров.

Все жиры являются горючими веществами. При их горении выделяется большое количество тепла: 1г жира при горении дает 9300кал.

Знаетели вы, что

В 1906году русским ученым С.А. Фокиным разработан, а в 1909г. им же осуществлен в промышленном масштабе метод гидрогенизации (отверждение) жиров.

Маргарин (с греч. - «жемчуг») получен в 1869 году. Различные его сорта получают, смешивая саломас с молоком, а в некоторых случаях - с яичным желтком. Получается продукт, по внешнему виду напоминающий сливочное масло, приятный запах маргарина достигается введением в его состав специальных ароматизаторов – сложных композиций различных веществ, непременной составной частью которых является диацетил (бутандион) - жидкость желтого цвета, содержится в коровьем масле.

Однако встречаются и животные жиры, содержащие значительное количество непредельных кислот и представляющие собой жидкие вещества (ворвань, тресковый жир или рыбий жир).

Растительные жиры- масла добывают из семян и мякоти плодов различных растений. Они отличаются высоким содержанием олеиновой и других непредельных кислот и содержат лишь незначительное количество стеариновой и пальмитиновой кислот (подсолнечное, оливковое, хлопковое, льняное и др. масла). Лишь в некоторых растительных жирах преобладают предельные кислоты, и они являются твердыми веществами (кокосовое масло, масло какао и др.).

Сложные эфиры фруктовых эссенций обладают приятным запахом фруктов, цветов, например изоамилацетат - запахом груш, амилформиат - вишен, этилформиат - рома, изоамилбутират - ананасов и т.д. Их применяют в кондитерском производстве, при изготовлении безалкогольных напитков, в парфюмерии.

Из полиметилметакрилата готовят исключительно ценный синтетический материал - органическое стекло (плексиглас). Последнее превосходит силикатное стекло по прозрачности и по способности пропускать УФ-лучи. Его используют в машино- и приборостроении, при изготовлении различных бытовых и санитарных предметов, посуды, украшений, часовых стекол. Благодаря физиологической индифферентности полиметилметакрилат нашел применение для изготовления зубных протезов и т.п.

Винилацетат - эфир винилового спирта и уксусной кислоты. Его получают, например, при пропускании смеси паров уксусной кислоты и ацетилена над ацетатами кадмия и цинка при 180-220 о С:

СН 3 -СООН + СН≡СН → СН 3 -СО-О-СН=СН 2

Винилацетат – бесцветная жидкость, легко полимеризуется, образуя синтетический полимер - поливинилацетат (ПВА), применяется для изготовления лаков, клеев, искусственной кожи.

Дикарбоновые кислоты

Дикарбоновые кислоты содержат две карбоксильные группы. Наиболее известными являются кислоты линейного строения, содержащие от 2 до 6 атомов углерода:

НООС-СООН - этандиовая (номенклатура ИЮПАК) или щавелевая кислота (тривиальная номенклатура)

НООС-СН 2 -СООН - пропандиовая или малоновая кислота

НООС-СН 2 -СН 2 -СООН - бутандиовая или янтарная кислота

НООС-СН 2 -СН 2 -СН 2 -СООН - пентандиовая или глутаровая кислота

НООС-СН 2 -СН 2 -СН 2 -СООН - адипиноавя кислота

Физические свойства. Двухосновные кислоты - кристаллические вещества с высокими температурами плавления, причем у кислот с четным числом атомов углерода она выше; низшие кислоты растворимы в воде.

Химические свойства . По химическим свойствам двухосновные кислоты аналогичны монокарбоновым кислотам, но имеют ряд отличительных особенностей, обусловленных наличием в молекулах двух карбоксильных групп и их взаимным влиянием.

Дикарбоновые кислоты более сильные кислоты, чем монокарбоновые кислоты с тем же числом атомов углерода: Кион. щавелевой кислоты (Н 2 С 2 О 4) - 5,9 10 -2 , 6,4 10 -5 , уксусной кислоты - 1,76 10 -5 . По мере увеличения расстояния между карбоксильными группами кислотные свойства дикарбоновых кислот уменьшаются. Дикарбоновые кислоты могут образовывать два ряда солей - кислые, например НООС-СООNa и средние - NaООС-СООNa.

Дикарбоновые кислоты имеют ряд специфических свойств, которые определяются наличием в молекуле двух карбоксильных групп. Например, отношение дикарбоновых кислот к нагреванию.

Превращения дикарбоновых кислот при нагревании зависят от числа атомов углерода в их составе и определяются возможностью образования термодинамически стабильных пяти- и шестичленных циклов.

При нагревании щавелевой и малоновой кислот происходит декарбоксилирование с образованием монокарбоновых кислот:

НООС-СН 2 -СООН → СН 3 -СООН + СО 2

Янтарная, глутаровая кислоты при нагревании легко отщепляют воду с образованием пяти- и шестичленных циклических ангидридов:

Адипиновая кислота при нагревании декарбоксилирует с образованием циклического кетона - циклопентанона:

Дикарбоновые кислоты взаимодействуют с диаминами и диолами с образованием соответственно полиамидов и полиэфиров, которые используются в производстве синтетических волокон.

Наряду с насыщенными дикарбоновыми кислотами известны непредельные, ароматические дикарбоновые кислоты.

Нахождение в природе и применение кислот:

Щавелевая кислота широко распространена в растительном мире. В виде солей содержится в листьях щавеля, ревеня, кислицы. В организме человека образует труднорастворимые соли (оксалаты), например оксалат кальция, которые отлагаются в виде камней в почках и мочевом пузыре. Применяют как отбеливающее средство: удаление ржавчины, красок, лака, чернил; в органическом синтезе.

Малоновая кислота (сложные эфиры и соли - малоноаты) содержится в некоторых растениях, например сахарной свекле. Широко используется в органическом синтезе для получения карбоновых кислот.

Янтарная кислота (соли и сложные эфиры называются сукцинатами) участвует в обменных процессах, протекающих в организме. Является промежуточным соединением в цикле трикарбоновых кислот. В 1556 году немецким алхимиком Агриколой впервые выделена из продуктов сухой перегонки янтаря. Кислота и ее ангидрид широко используются в органическом синтезе.

Фумаровая кислота (НООС-СН=СН-СООН - транс- бутендиовая кислота) , в отличие от цис- малеиновой, широко распространена в природе, содержится во многих растениях, много - в грибах, участвует в процессе обмена веществ, в частности в цикле трикарбоновых кислот.

Малеиновая кислота(цис- бутендиовая кислоты) в природе не встречается. Кислота и ее ангидрид широко используются в органическом синтезе.

Орто -фталевая кислота, широкое применение имеют производные кислоты - фталевый ангидрид, сложные эфиры - фталаты (репелленты).

Терефталевая кислота- крупнотоннажный промышленный продукт, применяют для получения целого ряда полимеров - например, волокно лавсан, полиэтилентерефталат (ПЭТФ), из которого изготавливают пластиковые посуду, бутыли и т.д.

Выбор редакции
Добрый день, друзья! Малосольные огурцы - хит огуречного сезона. Большую популярность быстрый малосольный рецепт в пакете завоевал за...

В Россию паштет пришел из Германии. В немецком языке это слово имеет значение «пирожок». И первоначально это был мясной фарш,...

Простое песочное тесто, кисло-сладкие сезонные фрукты и/или ягоды, шоколадный крем-ганаш — совершенно ничего сложного, а в результате...

Как приготовить филе минтая в фольге - вот что необходимо знать каждой хорошей хозяйке. Во-первых, экономно, во-вторых, просто и быстро,...
Салат «Обжорка «, приготовленный с мясом — по истине мужской салат. Он накормит любого обжору и насытит организм до отвала. Этот салат...
Такое сновидение означает основу жизни. Сонник пол толкует как знак жизненной ситуации, в которой ваша основа жизни может показывать...
Во сне приснилась крепкая и зеленая виноградная лоза, да еще и с пышными гроздьями ягод? В реале вас ждет бесконечное счастье во взаимной...
Первое мясо, которое нужно давать малышу для прикорма, это – крольчатина. При этом очень важно знать, как правильно варить кролика для...
Ступеньки… Сколько десятков за день нам приходится их преодолевать?! Движение – это жизнь, и мы не замечаем, как пешим ходом наматываем...